• Title/Summary/Keyword: VLFS

Search Result 58, Processing Time 0.031 seconds

Hydroelastic Response of VLFS with Submerged-Plate Using Modified Hydrodynamic Coefficients

  • Lee, Sang-Min
    • Journal of Navigation and Port Research
    • /
    • v.31 no.7
    • /
    • pp.569-578
    • /
    • 2007
  • The primary objective of this study is to present a modified method of hydroelastic analysis and application of it to the VLFS with submerged plate. The modal analysis method is applied to the VLFS with the submerged plate using the modified hydrodynamic coefficients. Namely, the wave exciting forces are modified by the transmission wave coefficients, while the interaction factor is used for the modification of radiation forces. To validate the proposed method, comparisons between the numerical calculations and experimental data have been carried out for the deflections of VLFS, and it shows good agreement between the calculation and experiment. The results presented in this study demonstrate that the elastic response of the VLFS is strongly affected by the hydrodynamic interaction induced by the submerged plate. As a result, we can confirm that the submerged plate is useful for reducing the hydroelastic deflection of VLFS, and the proposed method is valuable for predicting the elastic response of VLFS with attached the submerged plate.

Hydroelastic Analysis of Pontoon Type VLFS Considering the Location and Shape of OWC Chamber (공기챔버 위치에 따른 폰툰형 초대형 구조물 유탄성응답 해석)

  • Hong, Sa-Young;Kyoung, Jo-Hyun;Kim, Byoung-Wan
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.22-29
    • /
    • 2008
  • A numerical investigation is made on the effects of the location and shape of the front wall of an OWC(Oscillating Water Column) chamber on the hydroelastic response of a VLFS. Most of the studies on the effects of an OWC chamber on the response of a VLFS have assumed the location of the OWC chamber to be at the front of the VLFS. In the present study, an OWC-chamber is introduced at an arbitrary position in relation to a VLFS to determine the influence of the location and shape of the OWC chamber on the hydroelastic response of the VLFS. A finite element method is adopted as a numerical scheme for the fluid domain. or the finite element method, combined with a mode superposition method, is applied in order to consider the change of mass and stiffness The OWC chamber in a piecewise constant manner. or the facilitated anefficient analysis of The hydroelastic response of the VLFS, as well as the easy modeling of different shape and material properties for the structure. Reduction of hydroelastic response of the VLFS is investigated for various locations and front wall shapes of the owe chamber.

Reducing hydroelastic response of very large floating structures by altering their plan shapes

  • Tay, Z.Y.;Wang, C.M.
    • Ocean Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.69-81
    • /
    • 2012
  • Presented herein is a study on reducing the hydroelastic response of very large floating structures (VLFS) by altering their plan shapes. Two different categories of VLFS geometries are considered. The first category comprises longish VLFSs with different fore/aft end shapes but keeping their aspect ratios constant. The second category comprises various polygonal VLFS plan shapes that are confined within a square boundary or a circle. For the hydroelastic analysis, the water is modeled as an ideal fluid and its motion is assumed to be irrotational so that a velocity potential exists. The VLFS is modeled as a plate by adopting the Mindlin plate theory. The VLFS is assumed to be placed in a channel or river so that only the head sea condition is considered. The results show that the hydroleastic response of the VLFS could be significantly reduced by altering its plan shape.

Influences of Stiffness Distributions on Hydroelastic Responses of Very Large floating Structures (강성분포의 변화가 초대형 부유식 구조물의 유탄성응답에 미치는 영향 고찰)

  • Kim, Byoung-Wan;Hyoung, Jo-Hyun;Hong, Sa-Young;Cho, Seok-Hyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.220-232
    • /
    • 2005
  • Influences of stiffness distributions on hydroelastic responses of very large floating structures (VLFS) are studied in this paper. Hydroelastic responses are calculated by direct method employing higher-order boundary element method (HOBEM) for fluid analysis and finite element method (FEM) for structure analysis. In structural analysis using FEM, Mindlin plate elements are used. An 1 km-long VLFS with uniform stiffness and modified VLFS with varying stiffness distributions are considered in numerical analysis. Responses of VLFS increase in flexible parts and decrease in stiff Parts. Reduction degree of displacements of VLFS with stiffened center is larger than that of VLFS with stiffened sides.

Motion and Wave Elevation Analyses for Floating Breakwaters and a VLFS (소파제-초대형 부유식 해상구조물 운동 및 소파효율 해석)

  • 홍도천;홍사영
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.3
    • /
    • pp.22-27
    • /
    • 2004
  • Waveheight attenuation efficiencies of floating breakwaters in water of finite depth for a VLFS are studied numerically in accordance with the two body radiation-diffraction problem. Four different forms of the breaker are tested with a solid VLFS. The radiation-diffraction wave elevations between the breakwater and the VLFS are predicted directly instead of the far-field transmission-reflection coefficients of the breakwater.

Hydroelastic Responses of the Floating Airport Considering the Shape for Control Tower (관제탑 형상을 고려한 부유식 해상공항의 유탄성 운동)

  • 이호영;곽영기;박종환
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.196-201
    • /
    • 2001
  • Very Large Floating Structures have been planned for effective utilization of ocean space in recent years. The VLFS usually has a control tower to guide airplane securely. This paper present an effective method for calculating the wave induced hydroelastic responses of VLFS considering the effect of control tower-shapes. The source and dipole distribution method is used to calculate the hydrodynamic loads and equation of motion is derived by considering the static and dynamic coupling effects from different segments of the plate. The rigidity matrix for VLFS is formulated by finite element method using a plate theory. The calculated results for VLFS with a control tower are compared with those for VLFS without a control tower.

  • PDF

Experimental Study of Hydroelastic Behaviors of VLFS Considering Breakwaters (방파제를 고려한 초대형 부유식 해상구조물의 유탄성 응답 특성에 관한 실험적 연구)

  • 신현경;이형락;유경훈;윤명철;강점문;김화수
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.1
    • /
    • pp.31-39
    • /
    • 2004
  • In this paper, an experimental study on the hydroelastic behaviors of a VLFS with L=5,000m was made considering a breakwater. The principal dimensions of the VLFS model were 9m${\times}$1.8${\times}$0.0108m(L${\times}$B${\times}$D) and the length of breakwater was 12.6m (1.4L). The distance between the VLFS and the breakwater varied from B/2 to 28. The wide tank test results were compared with the numerical predictions and the comparison showed a little gap along its longitudinal axis, in spite of using the very small model size due to the scale 1/555.5

Hydroelastic Responses of Nonerctangular Floating Airports Considering the Shape of Control Tower (관제탑 형상에 의한 불균일한 부유식 해상공항의 유탄성 운동)

  • 이호영;곽영기;박종환
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.32-37
    • /
    • 2002
  • Very Large Floating Structures have been planned for effective utilization of ocean space in recent years. The nonerctangular VLFS usually has a control tower to guide airplane securely. This paper presents an effective method for calculating the wave induced hydroelastic responses of VLFS considering the effect of control tower-shapes. The source and dipole distribution method is used to calculate the plate. The rigidity matrix for VLFS is formulated by finite element method using a plate theory. The calculated results for nonerctangular VLFS with a control tower are compared with those for VLFS without a control tower.

Hydroelastic analysis of a truss pontoon Mobile Offshore Base

  • Somansundar, S.;Selvam, R. Panneer;Karmakar, D.
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.423-448
    • /
    • 2019
  • Very Large Floating Structures (VLFS) are one among the solution to pursue an environmentally friendly and sustainable technology in birthing land from the sea. VLFS are extra-large in size and mostly extra-long in span. VLFS may be classified into two broad categories, namely the pontoon type and semi-submersible type. The pontoon-type VLFS is a flat box structure floating on the sea surface and suitable in regions with lower sea state. The semi-submersible VLFS has a deck raised above the sea level and supported by columns which are connected to submerged pontoons and are subjected to less wave forces. These structures are very flexible compared to other kinds of offshore structures, and its elastic deformations are more important than their rigid body motions. This paper presents hydroelastic analysis carried out on an innovative VLFS called truss pontoon Mobile Offshore Base (MOB) platform concept proposed by Srinivasan and Sundaravadivelu (2013). The truss pontoon MOB is modelled and hydroelastic analysis is carried out using HYDRAN-XR* for regular 0° waves heading angle. Results are presented for variation of added mass and damping coefficients, diffraction and wave excitation forces, RAOs for translational, rotation and deformational modes and vertical displacement at salient sections with respect to wave periods.

Experimental Study on the Hydroelastic Response of a Pontoon Type Structure with Nonuniform Mass and Stiffness (불균일 강성을 갖는 폰툰형 구조물의 유탄성 응답 특성에 관한 실험 연구)

  • Cho, Seok-Kyu;Hong, Sa-Young;Kim, Jin-Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.5
    • /
    • pp.34-40
    • /
    • 2004
  • Very Large Floating Structure(VLFS) is regarded as one of promising candidates for the future utilization of ocean space. VLFS has the merits of small environmental effect. short construction term, easiness for extension and removal. It is well known that hydroelastic response is one of major design concerns of such a huge structure. Most of studies on the hydroelastic analysis of VLFS assumed uniform mass and bending stiffness. In case of a floating hotel where noticeable change of mass and stiffness at the hotel part is expected. it is necessary to investigate the effect of nonuniform mass and bending stiffness on the hydroelastic response. A model test of a pontoon type VLFS with nonuniform bending stiffness carried out for performance evaluation of a floating marina-hotel-convention center is described in this paper. Through investigation of model test results and comparison with numerical analysis using eigenfunction method, effect of the variation of bending stiffness is discussed.