• Title/Summary/Keyword: VLCC

Search Result 135, Processing Time 0.019 seconds

Added Resistance and 2DOF Motion Analysis of KVLCC2 in Regular Head Waves using Dynamic Overset Scheme (동적 중첩격자 기법을 이용한 KVLCC2의 파랑중 부가저항 및 2자유도 운동 해석)

  • Kim, Yoo-Chul;Kim, Yoonsik;Kim, Jin;Kim, Kwang-Soo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.385-393
    • /
    • 2018
  • In this study, the analysis of 2DOF (2 Degree Of Freedom) motion and added resistance of a ship in regular head waves is carried out using RANS (Reynolds Averaged Navier-Stokes) approach. In order to improve the accuracy for large amplitude motions, the dynamic overset scheme is adopted. One of the dynamic overset schemes, Suggar++ is applied to WAVIS which is the in-house RANS code of KRISO (Korea Research Institute of Ships and Ocean Engineering). The grid convergence test is carried out using the present scheme before the analysis. The target hull form is KRISO VLCC tanker (KVLCC2) and 13 wave length conditions are applied. The present scheme shows the improved results comparing with the results of WAVIS2 in the non-inertial reference frame. The dynamic overset scheme is confirmed to give the comparatively better results for the large amplitude motion cases than the non-inertial frame based scheme.

On the Development of an initial Hull Structural CAD System based on the Semantic Product Data Model (의미론적 제품 데이터 모델 기반 초기 선체 구조 CAD 시스템 개발)

  • 이원준;이규열;노명일;권오환
    • Korean Journal of Computational Design and Engineering
    • /
    • v.7 no.3
    • /
    • pp.157-169
    • /
    • 2002
  • In the initial stages of ship design, designers represent geometry, arrangement, and dimension of hull structures with 2D geometric primitives such as points, lines, arcs, and drawing symbols. However, these design information(‘2D geometric primitives’) defined in the drawing sheet require more intelligent translation processes by the designers in the next design stages. Thus, the loss of design semantics could be occurred and following design processes could be delayed. In the initial design stages, it is not easy to adopt commercial 3D CAD systems, which have been developed f3r being used in detail and production design stages, because the 3D CAD systems require detailed input for geometry definition. In this study, a semantic product model data structure was proposed, and an initial structural CAD system was developed based on the proposed data structure. Contents(‘product model data and design knowledges’) of the proposed data structure are filled with minimal input of the designers, and then 3D solid model and production material information can be automatically generated as occasion demands. Finally, the applicability of the proposed semantic product model data structure and the developed initial structural CAD system was verified through application to deadweight 300,000ton VLCC(Very Large Crude oil Carrier) product modeling procedure.

Comparison of residual strength-grounding damage index diagrams for tankers produced by the ALPS/HULL ISFEM and design formula method

  • Kim, Do Kyun;Kim, Han Byul;Mohd, Mohd Hairil;Paik, Jeom Kee
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.47-61
    • /
    • 2013
  • This study compares the Residual ultimate longitudinal strength - grounding Damage index (R-D) diagrams produced by two analysis methods: the ALPS/HULL Intelligent Supersize Finite Element Method (ISFEM) and the design formula (modified Paik and Mansour) method - used to assess the safety of damaged ships. The comparison includes four types of double-hull oil tankers: Panamax, Aframax, Suezmax and VLCC. The R-D diagrams were calculated for a series of 50 grounding scenarios. The diagrams were efficiently sampled using the Latin Hypercube Sampling (LHS) technique and comprehensively analysed based on ship size. Finally, the two methods were compared by statistically analysing the differences between their grounding damage indices and ultimate longitudinal strength predictions. The findings provide a useful example of how to apply the ultimate longitudinal strength analysis method to grounded ships.

A Study on the Design of a Biased Asymmetric Preswirl Stator Propulsion System (편재된 비대칭형 전류고정날개 추진시스템 설계에 관한 연구)

  • Kang, Yong-Deok;Kim, Moon-Chan;Chun, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.32-36
    • /
    • 2003
  • This paper deals with a theoretical method for the design of a biased asymmetric preswirl stator propulsion system which has been used to increase efficiency by the recovery of a propeller slipstream rotational energy by the counter rotating flow of a stator. In the case of full slow-speed ship, the upward flow is generated at the propeller plane by the after body hull form. The generated upward flow cancells the rotating flow of the propeller at the starboard part while it increases at port part. A biased asymmetric preswirl stator propulsion system consists of three blades at the port and one blade at the starboard which can recover the biased rotating flow effectively. This paper provides the design concept which gives more simple and a high degree of efficiency. The model tests for the designed compound propulsion system will be carried out later.

  • PDF

A Study on Preventive Measures against Large Oil Spills in the Korean Coastal Waters-1 - Analyzing the Spill Accident from M/T Hebei Spirit - (우리나라 연안역에서의 대형해양오염사고 방지책에 관한 연구-1 - Hebei Spirit 호 오염사고를 중심으로 -)

  • Yun, Jong-Hwui
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2008.05a
    • /
    • pp.249-255
    • /
    • 2008
  • IOn 7th of Dec. 2007, large oil spill took place the seas off the Taean coast caused by the collision between VLCC Hebei Spirit and crane floating barge Samsung-1 and a lot of problems were revealed during response to the accident. The author, accordingly, examined to analyze the cause of this accident on the aspect of spill prevention and presented some preventive measures, such as strictness to the current standard for tug operation, expansion of VTS service area and transfer of the VTS responsibility to Korea Coast Guard, designation of appropriate anchorage per ship's type, cargo and visiting purpose, and special management for dangerous goods carriers.

  • PDF

Computation of Viscous Flows around a Ship with a Drift Angle and the Effects of Stern Hull Form on the Hydrodynamic Forces (사항중인 선체 주위의 점성유동 계산 및 조종유체력에 선미형상이 미치는 영향)

  • Sun-Young Kim;Yeon-Gyu Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.3
    • /
    • pp.1-13
    • /
    • 2001
  • RANS solver has been developed to solve the flows past a ship with a drift angle. The solver employs a finite volume method for the spatial discretization and Euler implicit method for the time integration. Turbulent flows are simulated by Spalart-Allmaras one-equation model. Developed solver is applied to analyze the hydrodynamic forces and flows of two tankers with a same forebody but different afterbodies. The computed flows and hydrodynamic forces are compared with the measured flows and captive model test data. The computed results show good agreements with experimental data and show clearly the effects of stern hull form on the hydrodynamic forces and the flows.

  • PDF

Generation of the Production Material Information of a Building Block and the Simulation of the Block Erection Based on the Initial Hull Structural Model (초기 신체 구조 모델을 기반으로 한 신체 블록의 물량 정보 생성 및 블록 탑재 시물레이션)

  • Roh, Myung-Il;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.1 s.145
    • /
    • pp.103-118
    • /
    • 2006
  • At the initial design stage, the generation process of the production material information of a building block and the simulation process of the block erection, which are required to perform the production planning and scheduling, have been manually performed using 2D drawings, based on the data of parent ships, and subjective intuition from past experience. To make these processes automatic, the accurate generation method of the production material information and the convenient simulation method of the block erection based on the initial hull structural model(3D CAD model), were developed in this study. Here, the initial hull' structural model was generated from the initial hull structural CAD system early developed by us. To evaluate the developed methods. these methods were applied to corresponding processes of a deadweight 300,OOOton VLCC. As a result. it was shown that the production material information of a building block can be accurately generated and the block erection can be conveniently simulated in the initial design stage.

Analysis of the Nonlinear Wave-Making Problem of Practical Hull Forms Using Panel Method (패널법을 이용한 일반 상선의 비선형 조파문제 해석)

  • Do-Hyun Kim;Wu-Joan Kim;Suak-Ho Van
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.4
    • /
    • pp.1-10
    • /
    • 2000
  • A panel method based on the raised panel approach is developed for the nonlinear ship wave problem of practical hull forms. For the validation of the present numerical scheme. the developed method is first applied to Series 60 hull for which the extensive experimental data are available. As practical applications. the developed method is applied to KRISO 3600 TEU container ship and KRISO 300K VLCC. With the primary emphasis on the nonlinear effects of the global wave pattern generated by the two commercial ships. the calculated wave patterns are compared and verified with the experiments of KRISO. It is found that the calculated results of the present method are quite satisfactory compared with the linear methods like Dawson's approach and Neumann-Kelvin solution.

  • PDF

A Numerical Study on the Flow around a Rudder behind Low Speed Full Ship

  • Lee, Young-Gill;Yu, Jin-Won;Kang, Bong-Han;Pak, Kyung-Ryeung
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.2
    • /
    • pp.41-52
    • /
    • 2008
  • The development of a high-lift rudder is needed because low speed full ships such as the VLCC(Very Large Crude oil Carrier) have difficulty for obtaining enough lifting force from a common rudder. The rudder of a ship is generally positioned behind the hull and propeller. Therefore, rudder design should consider the interactions between hull, propeller, and rudder. In the present study, the FLUENT code and body fitted mesh systems generated by the GRIDGEN program are adopted for the numerical simulations of flow characteristics around a rudder that is interacting with hull and propeller. Sliding mesh model(SMM) is adopted to analyze the interaction between propeller rotation and wake flow behind hull. Several numerical simulations are performed to compare the interactions such as hull-rudder, propeller-rudder, and hull-propeller-rudder. Also, we consider relationships between the interactions. The results of present numerical simulations show the variation of flow characteristics by the interaction between hull, propeller, and rudder, and these results are compared with an existing experimental result. The present study demonstrates that numerical simulations can be used effectively in the design of high-lift rudder behind low speed full ship.

A Study on Improvement of Criteria for Mooring Safety Assessment in Single Point Mooring

  • Lee, Sang-Won;Kim, Young-Du
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.287-297
    • /
    • 2019
  • The recent increase in crude oil trading has led to an increase in the workings of SPM for crude oil carriers. VLCCs generally encounter difficulty entering port due to limitations in terms of sea depth and maneuverability. The SPM is a system that allows mooring to the buoy located in the outer sea for such vessels. However, the buoy is more affected by relatively external forces because of their of shore location. Therefore, the safety assessment of SPM is particularly important as it can lead to large oil pollution disasters in the event of SPM accidents. Despite this, in the implementation of the Marine Traffic Safety Audit Scheme in Korea, there exists no guidance for SPM. In this study, a SPM mooring safety assessment is performed using OPTIMOOR, a numerical analysis program, so as to understand the mooring characteristics of SPM. As a result, it is confirmed that the tension of mooring lines and hull movement in the SPM are greatly affected by the encounter angles with external forces. In addition, it is found that the maximum tension of the mooring line is elevated as the water depth becomes shallower through sensitivity analysis. According to SPM characteristics, which has a large influence on the encounter angle, this study has proposed an amendment to setting criteria in the implementation of the Maritime Traffic Safety Audit Scheme which could improve the reliability and accuracy of mooring safety assessments.