• Title/Summary/Keyword: VIS Spectroscopy Analysis

Search Result 199, Processing Time 0.028 seconds

A facile synthesis of transfer-free graphene by Ni-C co-deposition

  • An, Sehoon;Lee, Geun-Hyuk;Jang, Seong Woo;Hwang, Sehoon;Yoon, Jung Hyeon;Lim, Sang-Ho;Han, Seunghee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.129-129
    • /
    • 2016
  • Graphene, as a single layer of $sp^2$-bonded carbon atoms packed into a 2D honeycomb crystal lattice, has attracted much attention due to its outstanding properties. In order to synthesize high quality graphene, transition metals, such as nickel and copper, have been widely employed as catalysts, which needs transfer to desired substrates for various applications. However, the transfer steps are not only complicated but also inevitably induce defects, impurities, wrinkles, and cracks of graphene. Furthermore, the direct synthesis of graphene on dielectric surfaces has still been a premature field for practical applications. Therefore, cost effective and concise methods for transfer-free graphene are essentially required for commercialization. Here, we report a facile transfer-free graphene synthesis method through nickel and carbon co-deposited layer. In order to fabricate 100 nm thick NiC layer on the top of $SiO_2/Si$ substrates, DC reactive magnetron sputtering was performed at a gas pressure of 2 mTorr with various Ar : $CH_4$ gas flow ratio and the 200 W DC input power was applied to a Ni target at room temperature. Then, the sample was annealed under 200 sccm Ar flow and pressure of 1 Torr at $1000^{\circ}C$ for 4 min employing a rapid thermal annealing (RTA) equipment. During the RTA process, the carbon atoms diffused through the NiC layer and deposited on both sides of the NiC layer to form graphene upon cooling. The remained NiC layer was removed by using a 0.5 M $FeCl_3$ aqueous solution, and graphene was then directly obtained on $SiO_2/Si$ without any transfer process. In order to confirm the quality of resulted graphene layer, Raman spectroscopy was implemented. Raman mapping revealed that the resulted graphene was at high quality with low degree of $sp^3$-type structural defects. Additionally, sheet resistance and transmittance of the produced graphene were analyzed by a four-point probe method and UV-vis spectroscopy, respectively. This facile non-transfer process would consequently facilitate the future graphene research and industrial applications.

  • PDF

Nanolayered CuWO4 Decoration on Fluorine-Doped SnO2 Inverse Opals for Solar Water Oxidation

  • Cho, Ha Eun;Yun, Gun;Arunachalam, Maheswari;Ahn, Kwang-Soon;Kim, Chung Soo;Lim, Dong-Ha;Kang, Soon Hyung
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.282-291
    • /
    • 2018
  • The pristine fluorine-doped $SnO_2$ (abbreviated as FTO) inverse opal (IO) was developed using a 410 nm polystyrene bead template. The nanolayered copper tungsten oxide ($CuWO_4$) was decorated on the FTO IO film using a facile electrochemical deposition, subsequently followed by annealing at $500^{\circ}C$ for 90 min. The morphologies, crystalline structure, optical properties and photoelectrochemical characteristics of the FTO and $CuWO_4$-decorated FTO (briefly denoted as $FTO/CuWO_4$) IO film were investigated by field emission scanning electron microscopy, X-ray diffraction, UV-vis spectroscopy and electrochemical impedance spectroscopy, showing FTO IO in the hexagonally closed-pack arrangement with a pore diameter and wall thickness of about 300 nm and 20 nm, respectively. Above this film, the $CuWO_4$ was electrodeposited by controlling the cycling number in cyclic voltammetry, suggesting that the $CuWO_4$ formed during 4 cycles (abbreviated as $CuWO_4$(4 cycles)) on FTO IO film exhibited partial distribution of $CuWO_4$ nanoparticles. Additional distribution of $CuWO_4$ nanoparticles was observed in the case of $FTO/CuWO_4$(8 cycles) IO film. The $CuWO_4$ layer exhibits triclinic structure with an indirect band gap of approximately 2.5 eV and shows the enhanced visible light absorption. The photoelectrochemical (PEC) behavior was evaluated in the 0.5 M $Na_2SO_4$ solution under solar illumination, suggesting that the $FTO/CuWO_4$(4 cycles) IO films exhibit a photocurrent density ($J_{sc}$) of $0.42mA/cm^2$ at 1.23 V vs. reversible hydrogen electrode (RHE, denoted as $V_{RHE}$), while the FTO IO and $FTO/CuWO_4$(8 cycles) IO films exhibited a $J_{sc}$ of 0.14 and $0.24mA/cm^2$ at $1.23V_{RHE}$, respectively. This difference can be explained by the increased visible light absorption by the $CuWO_4$ layer and the favorable charge separation/transfer event in the cascading band alignment between FTO and $CuWO_4$ layer, enhancing the overall PEC performance.

Performance Evaluation of Hazardous Substances using Measurement Vehicle of Field Mode through Emergency Response of Chemical Incidents

  • Lee, Yeon-Hee;Hwang, Seung-Ryul;Kim, Jae-Young;Kim, Kyun;Kwak, Ji Hyun;Kim, Min Sun;Park, Joong Don;Jeon, Junho;Kim, Ki Joon;Lee, Jin Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.294-302
    • /
    • 2015
  • BACKGROUND: Chemical accidents have increased owing to chemical usage, human error and technical failures during the last decades. Many countries have organized supervisory authorities in charge of enforcing related rules and regulations to prevent chemical accidents. A very important part in chemical accidents has been coping with comprehensive first aid tool. Therefore, the present research has provided information with the initial applications concern to the rapid analysis of hazardous material using instruments in vehicle of field mode after chemical accidents. METHODS AND RESULTS: Mobile measurement vehicle was manufactured to obtain information regarding field assessments of chemical accidents. This vehicle was equipped with four instruments including gas chromatography with mass spectrometry (GC/MS), Fourier Transform Infrared Spectroscopy (FT-IR), Ion Chromatography (IC), and UV/Vis spectrometer (UV) to analyses of accident preparedness substances, volatile compounds, and organic gases. Moreover, this work was the first examined the evaluation of applicability for analysis instruments using 20 chemicals in various accident preparedness substances (GC/MS; 6 chemicals, FT-IR; 2 chemicals, IC; 11 chemicals, and UV; 1 chemical) and their calibration curves were obtained with high linearity ( r 2 > 0.991). Our results were observed the advantage of the high chromatographic peak capacity, fast analysis, and good sensitivity as well as resolution. CONCLUSION: When chemical accidents are occurred, the posted measurement vehicle may be utilized as tool an effective for qualitative and quantitative information in the scene of an accident owing to the rapid analysis of hazardous material.

Preparation of TiO2Powder by Hydrothemal Precipitation Method and their Photocatalytic Properties (수열합성법에 의한 TiO2 분말 제조와 광촉매 특성)

  • Kim, Seok-Hyeon;Jeong, Sang-Gu;Na, Seok-En;Kim, Si-Young;Ju, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.195-202
    • /
    • 2013
  • $TiO_2$ powders were prepared from titanium (IV) sulfate ($Ti(SO_4)_2$) solution using ammonia solution at low reaction temperature ($80{\sim}100^{\circ}C$) and atmospheric pressure by hydrothermal precipitation method without calcination. The effect of reaction conditions, such as reaction temperature, initial concentration of titanium (IV) sulfate ($Ti(SO_4)_2$) solution, pH of mixture solution and the physical properties of the prepared $TiO_2$, such as crystallite structure, crystallite size were investigated. The photocatalytic activity of prepared $TiO_2$ was tested by the photolysis of brilliant blue FCF (BB-FCF) under the UV and the analysis of UV-VIS diffuse reflectance spectroscopy (DRS). The physical properties of prepared $TiO_2$ were examined by X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence spectrometer (PL), particle size distribution measurements. The crystallite size and crystallinity of prepared $TiO_2$ increased with increasing titanium (IV) sulfate ($Ti(SO_4)_2$) concentration, but photocatalytic activity decreased. The crystallite size decreased with increasing pH of mixture solution, but photocatalytic activity increased. The crystallinity and photocatalytic activity increased with increasing reaction temperature. The results showed that anatase type $TiO_2$ could be prepared by hydrothermal precipitation method using titanium (IV) sulfate ($Ti(SO_4)_2$) solution and ammonia solution at low reaction temperature and atmospheric pressure without calcination.

Characterization of the Water Soluble Organic Fraction Extracted from a Sewage Sludge Amended Soil (Sewage Sludge를 시용(施用)한 토양(土壤)에서 추출(抽出)한 수용성유기물(水溶性有機物)의 화학구조적(化學構造的) 특성(特性))

  • Lim, Hyungsik;Volk, V.V.;Baham, J.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.18 no.1
    • /
    • pp.38-49
    • /
    • 1985
  • The water soluble organic fractions (WSOF) from an agricultural soil (W), a soil treated with sludge for 6 years ($WS_6$), a sludge-soil mixture incubated for one week ($WS_1$), and sewage sludge (SS) were extracted, purified, and characterized by elemental analysis, functional group determinations, infrared, UV-visible, and proton nuclear magnetic resonance spectrosocpy. The SS was characterized by higher organic H, N, and P contents, a higher H/C ratio, and a lower C/N ratio than W. Total acidity carboxyl and phenolic hydroxyl group contents were generally highest in SS, intermediate in $WS_6$ and $WS_1$, and lowest in W. Overall aromatic character and aromatic carboxyl group contents were highest in W, and lowest in SS. Aliphatic proton, aliphatic carboxyl, and phenolic hydroxyl group contents were highest in SS, and lowest in W. Protein decomposition products were the pronounced components in SS, and decreased in concentration as the sludge component in the mixtures decreased. The $^1H$-NMR spectra suggested that the SS-protons were bound to a wider range of functional groups than W-protons. Structural complexities around the aromatic protons followed the following order: SS>$WS_1$>$WS_6$>W.

  • PDF

Hexagonal Boron Nitride Monolayer Growth without Aminoborane Nanoparticles by Chemical Vapor Deposition

  • Han, Jaehyu;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.409-409
    • /
    • 2014
  • Recently hexagonal boron nitride (h-BN), III-V compound of boron and nitrogen with strong covalent $sp^2$ bond, is a 2 dimensional insulating material with a large direct band gap up to 6 eV. Its outstanding properties such as strong mechanical strength, high thermal conductivity, and chemical stability have been reported to be similar or superior to graphene. Because of these excellent properties, h-BN can potentially be used for variety of applications such as dielectric layer, deep UV optoelectronic device, and protective transparent substrate. Ultra flat and charge impurity-free surface of h-BN is also an ideal substrate to maintain electrical properties of 2 dimensional materials such as graphene. To synthesize a single or a few layered h-BN, chemical vapor deposition method (CVD) has been widely used by using an ammonia borane as a precursor. Ammonia borane decomposes into hydrogen (gas), monomeric aminoborane (solid), and borazine (gas) that is used for growing h-BN layer. However, very active monomeric aminoborane forms polymeric aminoborane nanoparticles that are white non-crystalline BN nanoparticles of 50~100 nm in diameter. The presence of these BN nanoparticles following the synthesis has been hampering the implementation of h-BN to various applications. Therefore, it is quite important to grow a clean and high quality h-BN layer free of BN particles without having to introduce complicated process steps. We have demonstrated a synthesis of a high quality h-BN monolayer free of BN nanoparticles in wafer-scale size of $7{\times}7cm^2$ by using CVD method incorporating a simple filter system. The measured results have shown that the filter can effectively remove BN nanoparticles by restricting them from reaching to Cu substrate. Layer thickness of about 0.48 nm measured by AFM, a Raman shift of $1,371{\sim}1,372cm^{-1}$ measured by micro Raman spectroscopy along with optical band gap of 6.06 eV estimated from UV-Vis Spectrophotometer confirm the formation of monolayer h-BN. Quantitative XPS analysis for the ratio of boron and nitrogen and CS-corrected HRTEM image of atomic resolution hexagonal lattices indicate a high quality stoichiometric h-BN. The method presented here provides a promising technique for the synthesis of high quality monolayer h-BN free of BN nanoparticles.

  • PDF

A STUDY OF THE MECHANISM OF IMPROVING ACID RESISTANCE OF BOVINE TOOTH ENAMEL AFTER PULSED Nd-YAG LASER IRRADIATION (펄스형 Nd-YAG 레이저 조사에 의한 법랑질 내산성 증가 기전에 관한 연구)

  • Lee, Young-Soon;Shon, Heung-Kyu
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.3
    • /
    • pp.640-658
    • /
    • 1996
  • The purpose of this study was to examine the mechanism of improving acid resistance of Nd-YAG laser irradiated tooth enamel and determine the most effective energy density for improving acid resistance. The bovine tooth enamel were lased with a pulsed Nd-YAG laser. The energy densities of exposed laser beam were varied from 10 to $70\;J/cm^2$. To investigate the degree of improving acid resistance by irradiation, all the samples were submerged to demineralize in 0.5 N $HClO_4$ solution for 1 minute. After 1 minute, 0.05 % $LaCl_3$ was added to the solution for interrupting the demineralization reaction. The amounts of dissolved calcium and phosphate in the solution were measured by using an atomic absorption spectrophotometer and the UV/VIS spectrophotometer, respectively. To examine the mechanism of improving acid resistance, X-ray diffraction analysis, infrared spectroscopy, and scanning electron microscopy were taken. The X-ray diffraction pattern of the samples were obtained in the $10^{\circ}{\sim}80^{\circ}2{\theta}$ range with $Cu-K{\alpha}$ radiation using M18HF(Mac Science Co.) with X-ray diffractometer operating at 40 KV and 300 mA. The infra-red spectra of the ground samples in 300 mg KBr pellets 10 mm diameter were obtained in the $4000cm^{-1}\;to\;400cm^{-1}$ range using JASCO 300E spectrophotometer. The scanning electron microscopy was carried out using JSM6400(JEOL Co.) with $500{\sim}2000$ times magnification. The results were as follow 1. The concentration of calcium dissolved from laser irradiated enamel with $50J/cm^2$ was significantly lesser than that of unlased control group (p<0.05) 2. From the result of the X-ray diffraction analysis, $\beta$-TCP, which increases acid solubility, was identified in lased enamel but the diffraction peaks of (002) and (004) became sharp with increasing energy density of laser irradiation. This means that the crystals in lased samples were grown through the c-axis and subsequently, the acid solubility of enamel decreased. 3. The a-axis parameter was slightly increased by laser irradiation, whereas the c-axis parameter was almost constant except for a little decrease at $50J/cm^2$. 4. In the infra-red spectra of lased enamels, phosphate bands ($600{\sim}500cm^{-1}$), B-carbonate bands (870, $1415{\sim}1455cm^{-1}$), and A-carbonate band ($1545cm^{-1}$) were observed. The amounts of phosphate bands and the B-carbonate bands were reduced, on the other hand, the amount of the A-carbonate band was increased by increase the energy density. 5. The SEM experiments reveal that the surface melting and recrystallization were appeared at $30J/cm^2$ and the cracks were observed at $70J/cm^2$. From above results, It may be suggested that the most effective energy density for improving acid resistance of tooth enamel with the irradiation of Nd-YAG laser was $50J/cm^2$. The mechanism of improving acid resistance were reduction of permeability due to surface melting and recrystallization of lased enamel and reduction of acid solubility of enamel due to decrease of carbonate content and growth of crystal.

  • PDF

Investigation of O4 Air Mass Factor Sensitivity to Aerosol Peak Height Using UV-VIS Hyperspectral Synthetic Radiance in Various Measurement Conditions (UV-VIS 초분광 위성센서 모의복사휘도를 활용한 다양한 관측환경에서의 에어로솔 유효고도에 대한 O4 대기질량인자 민감도 조사)

  • Choi, Wonei;Lee, Hanlim;Choi, Chuluong;Lee, Yangwon;Noh, Youngmin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.2_1
    • /
    • pp.155-165
    • /
    • 2020
  • In this present study, the sensitivity of O4 Air Mass Factor (AMF) to Aerosol Peak Height (APH) has been investigated using radiative transfer model according to various parameters(wavelength (340 nm and 477 nm), aerosol type (smoke, dust, sulfate), aerosol optical depth (AOD), surface reflectance, solar zenith angle, and viewing zenith angle). In general, it was found that O4 AMF at 477 nm is more sensitive to APH than that at 340 nm and is stably retrieved with low spectral fitting error in Differential Optical Absorption Spectroscopy (DOAS) analysis. In high AOD condition, sensitivity of O4 AMF on APH tends to increase. O4 AMF at 340 nm decreased with increasing solar zenith angle. This dependency isthought to be induced by the decrease in length of the light path where O4 absorption occurs due to the shielding effect caused by Rayleigh and Mie scattering at high solar zenith angles above 40°. At 477 nm, as the solar zenith angle increased, multiple scattering caused by Rayleigh and Mie scattering partly leads to the increase of O4 AMF in nonlinear function. Based on synthetic radiance, APHs have been retrieved using O4 AMF. Additionally, the effect of AOD uncertainty on APH retrieval error has been investigated. Among three aerosol types, APH retrieval for sulfate type is found to have the largest APH retrieval error due to uncertainty of AOD. In the case of dust aerosol, it was found that the influence of AOD uncertainty is negligible. It indicates that aerosol types affect APH retrieval error since absorption scattering characteristics of each aerosol type are various.

Antioxidative and Cellular Protective Effects of Lysimachia christinae Hance Extract and Fractions (금전초 추출물 및 분획물의 항산화 활성 및 세포 보호 효과)

  • Kim, A Rang;Jung, Min Chul;Jeong, Hye In;Song, Dong Gi;Seo, Young Bin;Jeon, Young Hee;Park, So Hyun;Shin, Hyuk Soo;Lee, Sang Lae;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.176-184
    • /
    • 2018
  • In the present study, we investigated the antioxidative properties, cellular protective effects and component analyses of 50% ethanol extract, ethyl acetate fraction and aglycone fraction obtained from Lysimachia christinae Hance (L. christinae Hance). In the evaluation of antioxidative properties, the free radical scavenging activities ($FSC_{50}$) of 50% ethanol extract, ethyl acetate fraction and aglycone fraction were 146.8, 22.2 and $27.2{\mu}g/mL$, respectively and total antioxidant capacities ($OSC_{50}$) were 29.3, 2.9 and $4.5{\mu}g/mL$, respectively. The ethyl acetate fraction showed the highest free radical scavenging activity and total antioxidant capacity. Also, the cellular protective effects (${\tau}_{50}$) of 50% ethanol extract, ethyl acetate fraction and aglycone fraction on $^1O_2$ induced photohemolysis of human erythrocytes were 26.9, 57.5 and 103.9 min at $5{\mu}g/mL$, respectively. In particular, ${\tau}_{50}$ of the aglycone fraction exhibited a higher cellular protective effect than that of (+)-${\alpha}$-tocopherol (37.7 min). The cell viability of the ethyl acetate fraction on the UVB-induced cell damage increased up to 90.1%. In addition, the ethyl acetate fraction ($5-25{\mu}g/mL$) showed cellular protective effects on the $H_2O_2-induced$ cell damages in a dose-dependent manner. TLC, HPLC, UV-vis spectroscopy and LC-MS were used to analyse components of the ethyl acetate fraction and the main components were quercetin, kaempferol and their glycosides. In conclusion, L. christinae Hance extract/fraction can function as antioxidants to protect the skin exposed to UV radiation and may also be used as a novel functional cosmetic material, for example, an antioxidant against skin photoaging.