Browse > Article
http://dx.doi.org/10.14478/ace.2017.1113

Antioxidative and Cellular Protective Effects of Lysimachia christinae Hance Extract and Fractions  

Kim, A Rang (Department of Fine Chemistry, Nanobiocosmetic Lab., Cosmetic R&D Center, Seoul National University of Science and Technology)
Jung, Min Chul (Hansung Science High School)
Jeong, Hye In (Hansung Science High School)
Song, Dong Gi (Hansung Science High School)
Seo, Young Bin (Hansung Science High School)
Jeon, Young Hee (Hansung Science High School)
Park, So Hyun (Department of Fine Chemistry, Nanobiocosmetic Lab., Cosmetic R&D Center, Seoul National University of Science and Technology)
Shin, Hyuk Soo (Department of Fine Chemistry, Nanobiocosmetic Lab., Cosmetic R&D Center, Seoul National University of Science and Technology)
Lee, Sang Lae (Department of Fine Chemistry, Nanobiocosmetic Lab., Cosmetic R&D Center, Seoul National University of Science and Technology)
Park, Soo Nam (Department of Fine Chemistry, Nanobiocosmetic Lab., Cosmetic R&D Center, Seoul National University of Science and Technology)
Publication Information
Applied Chemistry for Engineering / v.29, no.2, 2018 , pp. 176-184 More about this Journal
Abstract
In the present study, we investigated the antioxidative properties, cellular protective effects and component analyses of 50% ethanol extract, ethyl acetate fraction and aglycone fraction obtained from Lysimachia christinae Hance (L. christinae Hance). In the evaluation of antioxidative properties, the free radical scavenging activities ($FSC_{50}$) of 50% ethanol extract, ethyl acetate fraction and aglycone fraction were 146.8, 22.2 and $27.2{\mu}g/mL$, respectively and total antioxidant capacities ($OSC_{50}$) were 29.3, 2.9 and $4.5{\mu}g/mL$, respectively. The ethyl acetate fraction showed the highest free radical scavenging activity and total antioxidant capacity. Also, the cellular protective effects (${\tau}_{50}$) of 50% ethanol extract, ethyl acetate fraction and aglycone fraction on $^1O_2$ induced photohemolysis of human erythrocytes were 26.9, 57.5 and 103.9 min at $5{\mu}g/mL$, respectively. In particular, ${\tau}_{50}$ of the aglycone fraction exhibited a higher cellular protective effect than that of (+)-${\alpha}$-tocopherol (37.7 min). The cell viability of the ethyl acetate fraction on the UVB-induced cell damage increased up to 90.1%. In addition, the ethyl acetate fraction ($5-25{\mu}g/mL$) showed cellular protective effects on the $H_2O_2-induced$ cell damages in a dose-dependent manner. TLC, HPLC, UV-vis spectroscopy and LC-MS were used to analyse components of the ethyl acetate fraction and the main components were quercetin, kaempferol and their glycosides. In conclusion, L. christinae Hance extract/fraction can function as antioxidants to protect the skin exposed to UV radiation and may also be used as a novel functional cosmetic material, for example, an antioxidant against skin photoaging.
Keywords
Lysimachia christinae Hance; reactive oxygen species; antioxidant; component analysis; cellular protective effect;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 X. Yang, B. C. Wang, X. Zhang, W. Q. Liu, J. Z. Qian, W. Li, J. Deng, G. K. Singh, and H. Su, Evaluation of Lysimachia christinae Hance extracts as anticholecystitis and cholagogic agents in animals, J. Ethnopharmacol., 137, 57-63 (2011).   DOI
2 L. J. Tian, N. Y. Yang, and W. Q. Chen, Triterpene saponins from Lysimachia christinae, J. Asian Nat. Prod. Res., 10, 265-269 (2008).   DOI
3 R. Y. Gan, L. Kuang, X. R. Xu, Y. Zhang, E. Q. Xia, F. L. Song, and H. B. Li, Screening of natural antioxidants from traditional Chinese medicinal plants associated with treatment of rheumatic disease, Molecules, 15(9), 5988-5997 (2010).   DOI
4 K. Yasukawa and M. Takido, Flavonoid glycosides from Lysimachiae Herba and Lysimachia christianae var. typica1, Planta Med., 59, 578-578 (1993).   DOI
5 T. Marica, Engstrom, M. Palijarvi, and J. P. Salminen, Rapid fingerprint analysis of plant extracts for ellagitannins, gallic acid, and quinic acid derivatives and quercetin, kaempferol- and myricetin-based flavonol glycosides by UPLC-QqQ-MS/MS, J. Agric. Food Chem., 63, 4068-4079 (2015).   DOI
6 T. Iwashina and S. Matsumoto, Flavonoid glycosides from the Fern, Schizaea (Schizaeaceae) in south pacific region, and their distribution pattern, Bull. Natl. Mus. Nat. Sci. B, 39(4), 195-201 (2013).
7 H. Sakakibara, Y. Honda, S. Nakagawa, H. Ashida, and K. Kanazawa, Simultaneous determination of all polyphenols in vegetables, fruits, and teas, J. Agric. Food Chem., 51, 571-581 (2003).   DOI
8 F. A. Bernal, L. E. Cuca-Suarez, L. F. Yamaguchi, and E. D. Coy-Barrera, LC-DAD-UV and LC-ESI-MS-based analyses, antioxidant capacity, and antimicrobial activity of a polar fraction from Iryanthera ulei leaves, Rec. Nat. Prod., 7(2), 152-156 (2013).
9 A. Plazonic, F. Bucar, Z. Males, A. Mornar, B. Nigovic, and N. Kujundzic, Identification and quantification of flavonoids and phenolic acids in burr parsley (Caucalis platycarpos L.), using high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry, Molecules, 14, 2466-2490 (2009).   DOI
10 J. Sun, F. Liang, Y. Bin, P. Li, and C. Duan, Screening non-colored phenolics in red wines using liquid chromatography/ultraviolet and mass spectrometry/mass spectrometry libraries, Molecules, 12, 679-693 (2007).   DOI
11 S. E. Fridovich and N. A. Porter, Oxidation of arachidonic acid in micelles by superoxide and hydrogen peroxide, J. Biol. Chem., 256, 260-265 (1981).
12 A. Kammeyer and R. M. Luiten, Oxidation events and skin aging, Ageing Res. Rev., 21, 16-29 (2015).   DOI
13 M. Wlaschek, I. Tantcheva-Poor, L. Naderi, W. J. Ma, A. Schneider, Z. Razi-Wolf, J. Schuller, and K. Scharffetter-Kochanek, Solar UV irradiation and dermal photoaging, J. Photochem. Photobiol. B., 63, 41-51 (2001).   DOI
14 R. Aquino, S. Morelli, A. Tomaino, M. Pellegrino, A. Saija, L. Grumetto, C. Puglia, D. Ventura, and F. Bonina, Antioxidant and photoprotective activity of a crude extract of Culcitium reflexum H.B.K. leaves and their major flavonoids, J. Ethnopharmacol., 79, 183-191 (2002).   DOI
15 S. Passi, M. Picardo, C. D. Luca, A. S. Breathnach, and M. Nazzaro-Porro, Scavenging activity of azelaic acid on hydroxyl radicals in vitro, Free Radic. Res. Commun., 11, 329-338 (1991).   DOI
16 A. Kammeyer and R. M. Luiten, Oxidation events and skin aging, Ageing Res. Rev., 21, 16-29 (2015).   DOI
17 F. R. Gruijl, H. J. van Kranen, and L. H. Mullenders, UV-induced DNA damage, repair mutations and oncogenic pathways in skin cancer, J. Photochem. Photobiol., 63, 19-27 (2001).   DOI
18 J. E. Cleaver and E. Crowley, UV damage, DNA repair and skin carcinogenesis, Front. Biosci., 7, 1024-1043 (2002).
19 M. Wlaschek, I. Tantcheva-Poor, L. Naderi, W. Ma, L. A. Schneider, Z. Razi-Wolf, J. Schuller, and K. Scharffertter-Kochanek, Solar UV irradiation and dermal photoaging, J. Photochem. Photobiol. B, 63, 41-51 (2001)   DOI
20 M. Jose, Mates, C. Perez-gomez, and I. N. De Castro, Antioxidant enzymes and human diseases, Clin. Biochem., 32(8), 595-603 (1999).   DOI
21 J. Deng, M. Ren, X. Dai, D. Qu, M. Yang, T. Zhang, and B. Jiang, Lysimachia christinae Hance regresses preestablished cholesterol gallstone in mice, J. Ethnopharmacol., 166, 102-108 (2015).   DOI
22 S. N. Park, S. Y. Kim, G. N. Lim, N. R. Jo, and M. H. Lee, In vitro skin permeation and cellular protective effects of flavonoids isolated from Suaeda asparagoides extracts, J. Ind. Eng. Chem., 18, 680-683 (2012).   DOI
23 J. S. Seong, K. M. Kim, J. Y. suh, J. H. Ha, and S. N. Park, Antioxidative activities of whole plant extracts of Solanum nigrum L, J. Korean Oil Chem. Soc., 32, 781-788 (2015).   DOI
24 Y. N. Kim, B. Jennifer, Keogh, and P. M. Clifton, Polyphenols and glycemic control, Nutrients, 8(1), 17-43 (2016).   DOI
25 F. Gao, D. Zhao, and J. Deng, New flavonoids from Lysimachia christinae Hance, Helv. Chim. Acta, 96, 985-989 (2013).   DOI
26 China Pharmacopoeia Committee, Pharmacopoeia of the People's Republic China, 1, 204-205 China Medical Science Press, Beijing, China (2010).
27 N. Shoji, A. Umeyama, and T. Takemoto, $Na^+-K^+$-ATPase inhibitors from Lysimachia japonica., J. Nat. Prod., 47, 530-532 (1984).   DOI
28 H. Y. Kim, S. S. Kim, C. K. Lee, and J. W. Choi, Biological activities of Lysimachiae herba-(1)-effects of the pretreatment of Lysimachiae herba on the enzyme activities in galactosamine-intoxicated rats, Korean J. Pharmacogn., 27(1), 58-64 (1996).
29 J. W. Choi, J. C. Park, and C. K. Lee, Biologic activities of Lysimachiae Herba II-analgesic and antiinflammatory effects of ehtyl acetate fraction and a phenyl propanoid component, Nat. Prod. Sci., 3(2), 135-140 (1997).
30 A. Bendich, L. J. Machlin, and O. Scandurra, The antioxidant role of vitamin C, Adv. Free Radic. Biol. Med., 2, 419-444 (1986).   DOI