• Title/Summary/Keyword: VICON

Search Result 79, Processing Time 0.023 seconds

A Biomechanical Analysis of 540o Dwihuryeochagi of Taekwondo (태권도 540도 뒤후려차기 동작의 운동역학적 분석)

  • Kang, Dong-Kwon;Kang, Suh-Jung;Yu, Yeon-Joo
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.1
    • /
    • pp.19-24
    • /
    • 2013
  • The aim of the study was a quantitative analysis of elite athlete's $540^{\circ}$ Dwihuryeochagi and effects of ground movements to the jumping height and kicking velocity. Eleven elite players(Taekwondo demonstration team) participated in this study. In order to get the kinetic and kinematic variables, ten Vicon cameras and a force plate were used. Foot segment velocity(FSV), vertical ground reaction force(GRF), impulse, ground time(GT) in phase 1, trunk angular velocity(TAV), vertical center of gravity(COG), flight time(FT) in phase 2 and kicking leg segment velocity(KSV) in phase 3 were measured and analyzed. Results indicated that there were similar patterns of variables among phases between subjects. Non-significant correlation(r=.145) between flight time(FT) and impulse was found. Also non-significant correlation(r=.119) between center of gravity(COG) and impulse was found. In conclusions, there were similar strategies in phase 1, phase 2, and phase 3 between subjects.

Comparative Analysis of Nordic Walking and Normal Gait Based on Efficiency (노르딕 워킹과 일반 보행의 효율성 비교 분석)

  • Kim, Ro-Bin;Cho, Joon-Haeng
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.4
    • /
    • pp.365-372
    • /
    • 2010
  • The purpose of this study were to analyze the changes in kinematic and kinetic parameters and to find biomechanical benefits of Nordic Walking and normal gait performed under the same velocity. Nine participants(age: $26.73{\pm}3.28$ year, height: $182.45{\pm}4.62\;cm$, weight: $76.59{\pm}6.84\;kg$) was chosen. The velocity of gait was set by 5.75 km/h which was made by a Nordic Walking professional. The data were collected by using VICON with 8 cameras to analyze kinematic variables with 200 Hz and force platform to analyze kinetic variables with 2000 Hz. The results of this study were as follows. First, when compared with Normal gait, Nordic Walking group showed decreased Plantarflexion angle and ROM. Second, Nordic Walking group showed decreased knee flexion angle and ROM. Third, Nordic Walking group showed increased hip joint movement. Fourth, Nordic Walking group showed higher active GRF but decreased loading rate from delayed Peak Vertical GRF time and increased impulse. Fifth, Nordic Walking group showed longer ground contact time. Through this study, we found that Nordic Walking showed higher stability and efficiency during gait than normal gait and that Nordic Walking may help people who have walking difficulties.

A Comparison of Head-Hand Coordination Patterns during Squash Forehand Strokes in Expert and Less-Skilled Squash Players

  • Roh, Miyoung
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.2
    • /
    • pp.109-117
    • /
    • 2018
  • Objective: To compare head and hand movement patterns during squash forehand motions between experts and less-skilled squash players. Method: Four experts and four less-skilled squash players participated in this study. They performed squash forehand swings and a VICON motion analysis system was used to obtain displacement and velocity data of the head and right hand during the movement. Mann-Whitney U-tests were performed to compare head and hand range of motion and peak velocity, and cross-correlation was performed to analyze the head-hand coordination pattern between groups in three movement directions. Results: In terms of head and hand kinematic data, experts had greater head range of motion during down swings than less-skilled squash players. Experts seemed to reach peak hand velocity at impact by reaching peak head velocity followed by hand peak velocity within a given temporal sequence. In terms of head-hand coordination patterns, both groups revealed high positive correlations in the medial-lateral direction, indicating a dominant allocentric coordination pattern. However, experts had uncoupled coordination patterns in the vertical direction and less-skilled squash players had high positive correlations. These results indicate that the head-hand movement pattern likely an important factor squash forehand movement. Conclusion: Analysis of head and hand movement patterns could be a key variable in squash training to reach expert-level performance.

Study on Gait Analysis of Elders and Hemiplegia Patients using 3D Motion Analysis (고령자 및 편마비 환자의 3 차원 동작분석을 통한 보행 특성에 관한 연구)

  • Jang, Hye-Youn;Han, Jung-Soo;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.730-736
    • /
    • 2012
  • Latest, many researchers do research on wearable robot. The purpose of the researches is very diverse, it will improve efficiency in the industry, taken to replace the many workers in the military field and taken to assist bodily functions run out by aging. However, there is no clear Differentiated strategy depending on the purpose for design and control of the wearable robot. Although a common purpose is to drive the robot by the sensor signal (intent signals), the optimization about the mechanism and control studies must be done according to the user's physical ability and purpose. In this study, the study's first phase for the development of wearable robotic gait rehabilitation, gait characteristics were analyzed elders and hemiplegia patients using a 3D gait analysis system (VICON512). As a result, asymmetric gait characteristics of the hemiplegia patients were found compared with the normal elderly.

Effects of Different Shoe Heel Heights on the Kinematic Variables of the Lower Extremities during Walking on Slopes by healthy adult women

  • Yang, Yong-pil
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.14 no.3
    • /
    • pp.21-27
    • /
    • 2019
  • PURPOSE: This study examined the changes in the kinematic variables during walking on a downhill ramp according to the shoe heel height. METHODS: The subjects were 10 adult women with no history of musculoskeletal disorders who agreed to participate in the study. Data were collected using a motion analysis system (VICON) consisting of six infrared cameras. The slope was 120 cm in width, 200 cm in length, and 15 in inclination. To confirm the change in gait parameters (stride length, gait speed) and lower extremity joint angle according to the heel heights of the shoes, flat, 5 cm, and 10 cm heel shoes were prepared and walked alternately. RESULTS: As a result, both the stride length and walking speed showed significant differences according to the heel height between flat and 10 cm (p<.05). In the sagittal plane, there was no significant difference in the hip joint and knee joint, but a significant difference was observed in all events in the ankle joint on all heel heights (p<.05). In particular, the heel strike and mid stance events showed significant differences among all height conditions (p<.05). No significant difference was observed in any of the joint angle changes in the frontal plane (p>.05). CONCLUSION: As the shoe heel height increased, the instability increased and efforts to secure the stability were made, leading to a shortened stride length, walking speed, and angle of the ankle joint.

Characteristics of Pelvic Ranges According to Artificial Leg Length Discrepancy During Gait: Three-Dimensional Analysis in Healthy Individuals (보행 중 인위적 다리길이 차이에 따른 3차원적 골반 가동범위의 특성)

  • Kim, Yongwook
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.7 no.2
    • /
    • pp.59-67
    • /
    • 2019
  • Purpose : The purpose of this study was to analyze the dynamic range of motion (ROM) of pelvic and translation of center of mass (COM) when wearing different shoe insole lifts according to leg length discrepancy (LLD) during free speed gait. Methods : Thirty-five healthy adults were participated in this study. Kinematic data were collected using a Vicon motion capture system. Reflective and cluster 40 markers attached to participants lower extremities and were asked to walk in a 6 m gait way under three different shoe lift conditions (without any insole, 1 cm insole, and 2 cm insole). The pelvic ROM and COM translation in three planes were sorted using a Nexus software, and a Visual3D motion analysis software was used to coordinate all kinematic data. Results : There were significantly increased maximal pelvic elevation and total pelvic range in coronal plane when wearing a standard shoe with 2 cm insole lift during gait (p<.05). When wearing a standard shoe with 2 cm insole lift, the total range of the pelvic segment were significantly different in all three motion planes (p<.05). Conclusion : Although LLD of less than 2 cm develops abnormal movement pattern of the pelvis and may cause of musculoskeletal diseases such as low back pain, hip and knee joint osteoarthritis, therefore intensive various physical therapy interventions for LLD are needed.

Relationship between Hallux Valgus Severity and 3D Ground Reaction Force in Individuals with Hallux Valgus Deformity during Gait

  • Kim, Yong-Wook
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.3
    • /
    • pp.21-27
    • /
    • 2021
  • PURPOSE: This study examined the relationship between the severity of a hallux valgus (HV) deformity and the kinetic three-dimensional ground reaction force (GRF) through a motion analysis system with force platforms in individuals with a HV deformity during normal speed walking. METHODS: The participants were 36 adults with a HV deformity. The participants were asked to walk on a 6 m walkway with 40 infrared reflective markers attached to their pelvic and lower extremities. A camera capture system and two force platforms were used to collect kinetic data during gait. A Vicon Nexus and Visual3D motion analysis software were used to calculate the kinetic GRF data. RESULTS: This research showed that the anterior maximal force that occurred in the terminal stance phase during gait had a negative correlation with the HV angle (r = -.762, p < .01). In addition, the HV angle showed a low negative correlation with the second vertical maximal force (r = .346, p < .05) and a moderate positive correlation with the late medial maximal force (r = .641, p < .01). CONCLUSION: A more severe HV deformity results in greater abnormal translation of the plantar pressure and a significantly reduced pressure force under the first metatarsophalangeal joint.

Relationship between 3D Ground Reaction Force and Leg Length Discrepancy during Gait among Standing Workers

  • Kim, Yong-Wook
    • PNF and Movement
    • /
    • v.20 no.1
    • /
    • pp.59-66
    • /
    • 2022
  • Purpose: The aim of this research was to verify the relationship between three-dimensional (3D) ground reaction force (GRF) and severity of leg length discrepancy (LLD) while walking at a normal speed. It used a 3D motion analysis system with force platforms in standing workers with LLD. Methods: Subjects comprising 45 standing workers with LLD were selected. Two force platforms were used to acquire 3D GRF data based on a motion analysis system during gait. Vicon Nexus and Visual3D v6 Professional software were used to analyze kinetic GRF data. The subjects were asked to walk on a walkway with 40 infrared reflective markers attached to their lower extremities to collect 3D GRF data. Results: The results indicated the maximal force in the posterior and lateral direction of the long limb occurring in the early stance phase during gait had significant positive correlation with LLD severity (r = 0.664~0.738, p <0.01). In addition, the maximal force medial direction of the long limb occurring in the late stance phase showed a highly positive correlation with the LLD measurement (r = 0.527, p <0.01). Conclusion: Our results indicate that greater measured LLD severity results in more plantar pressure occurring in the foot area during heel contact to loading response of the stance phase and the stance push-off period during gait.

Coordinated Intra-Limb Relationships and Control in Gait Development Via the Angle-Angle Diagram (보행 시 연령에 따른 하지 관절 내 운동학적 협응과 제어)

  • Lee, Kyung-Ok
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.17-35
    • /
    • 2004
  • The purpose of this study is to explain developmental process of gait via angle-angle diagram to understand how coordinated relationships and control change with age. Twenty four female children, from one to five years of age were the test subjects for this study, and their results were compared to a control group consisting of twenty one adult females. The Vicon 370 CCD camera, VCR, video timer, monitor, and audio visual mixer was utilized to graph the gait cycle for all test subjects. Both coordinated Intra-limb relationships, and range of motion and timing according to quadrant were explained through the angle angle diagram. Movement in the sagittal plane showed both coordinated relationships and control earlier than movement in the coronal or transverse plane. In the sagittal plane, hip and Knee coordinated relationships developed first (from one year of age.) Coordinated relationships in the Knee and ankle and hip and ankle developed next, respectively. Both hip and ankle and knee and ankle development were inhibited by the inability of children to completely perform plantar flexion during the swing and initial double limb support phases. Children appeared to compensate for this by extending at their hip joint more than adults during the third phase, final double limb support. In many cases the angle angle diagram for children had a similar shape as adult's angle angle diagram. This shows that children can coordinate their movements at an early age. However, the magnitudes and timing of children's angle angle diagrams still varied greatly from adults, even at five years of age. This indicates that even at this age, children still do not possess full control of their movements.

Reliability and Validity of Measurement Using Smartphone-Based Goniometer of Tibial External Rotation Angle in Standing Knee Flexion

  • Jeon, In-Cheol;Kwon, Oh-Yun;Weon, Jong-Hyuck;Ha, Sung-Min;Kim, Si-Hyun
    • Physical Therapy Korea
    • /
    • v.20 no.2
    • /
    • pp.60-68
    • /
    • 2013
  • The purpose of this study was to assess the intra-rater test-retest reliability of tibial external rotation angle measurement using a smartphone-based photographic goniometer, DrGoniometer (DrG) compared to a three-dimensional motion analysis system (Vicon). The current study showed an interchangeable method using DrG to measure the tibial external rotation angle in standing knee flexion at $90^{\circ}$. Twelve healthy subjects participated in this study. A rest session was conducted 30 minutes later for within-day reliability and five days later for between-day intra-rater test-retest reliability. To assess the validity of the measurement using DrG, we used a three dimensional motion analysis system as a gold standard to measure the angle of tibial external rotation. Intra-class correlation coefficient (ICC) and the standard error of measurement (SEM) values were used to determine the within- and between- day intra-rater test-retest reliability of using DrG and a three dimensional motion analysis system. To assess validity, Pearson correlation coefficients were used for two measurement techniques. The measurement for tibial external rotation had high intra-rater test-retest reliability of within-day (ICC=.88) and between-day (ICC=.83) reliability using DrG and of within-day (ICC=.93) and between-day (ICC=.77) reliability using a three-dimentional motion analysis system. Tibial external rotation angle measurement using DrG was highly correlated with those of the three-dimensional motion analysis system (r=.86). These results represented that the tibial external rotation angle measurement using DrG showed acceptable reliability and validity compared with the use of three-dimensional motion analysis system.