• Title/Summary/Keyword: VHF omnidirectional range

Search Result 5, Processing Time 0.018 seconds

A Study on the Monitoring of VOR (VOR 전파 감시방안에 관한 연구)

  • Moon, Jeong-Il;Park, Dong-Young;Kim, Baek-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.3
    • /
    • pp.303-312
    • /
    • 2010
  • VHF Omnidirectional Radio range(VOR) is used as an aircraft navigational aid. The VOR is a short-range air navigation system providing aircraft with its bearing relative to the ground station. The accuracy of a VOR must be checked in accordance with the current ICAO, FAA and domestic regulations. The primary purpose of performing VOR station ground checks is to minimize the need for expensive flight checks by determining the amount and direction of any course bearing inaccuracies being transmitted. In this paper we present current and advanced way of monitoring of VOR system. We verify this way by field test of the monitoring and it is a high performance way to achieve an improvement in accuracy and an effect compared to present monitoring system.

A Feasibility Study on Multiple DME Positioning Considering Time-Misaligned Range Measurements (시각 비동기 오차를 고려한 다중 DME 측위 적용 방안 연구)

  • Choi, Kwang-Ho;Lim, Joon-Hoo;Yoo, Won-Jae;So, Hyoungmin;Lee, Hyung-Keun
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.6
    • /
    • pp.534-543
    • /
    • 2015
  • This paper introduces the time-misalignment error between multiple range measurements acquired by an onboard distance measuring equipment (DME) interrogator and proposes an efficient position determination method that can mitigate the negative effects of the time-misalignment error. The introduced time-misalignment error does not occur in conventional utilization of DME combined with VHF omnidirectional range (VOR). The proposed position determination method projects all the DME range measurements acquired irregularly during an interval to the same time instance where the aircraft position is determined. By the simulation utilizing a representative aircraft trajectory, it is shown that it is possible to estimate the horizontal position accurately without any changes of ground DME facilities.

Alternative Positioning, Navigation, and Timing Applicable to Domestic PBN Implementation (국내 PBN 이행을 위한 대안 항법 적용 방안)

  • Kim, Mu-Geun;Kang, Ja-Young;Chang, Jae-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.1
    • /
    • pp.37-44
    • /
    • 2016
  • Republic of Korea has established its performance-based navigation (PBN) implementation plan in 2010 for ensuring a smooth transition to PBN operations and relevant new flight procedures are being developed in accordance with the roadmap. Various Navigation aids (NAVAIDs) like global navigation satellite systems (GNSS), distance measuring equipment (DME), VHF omnidirectional range (VOR), inertial navigation system (INS) are used to support PBN procedures. Among them, GNSS would play a central role in PBN implementation. However, vulnerability of satellite navigation signals to artificial and natural interferences has been discovered and various alternative positioning, navigation and timing (APNT) technologies are under development in many countries. In this paper, we study whether continuous PBN operations can be achievable without GNSS signals. As a result, it shows that some of the domestic airports require the construction of APNT in the approach area.

The Digital Redundancy Design for Back-up Mode Operation of Aviation Intercom (항공용 인터콤의 백업 모드 운용을 위한 디지털 방식의 이중화 설계)

  • Jeong, Seong-jae;Cho, Kyung-hak;Kim, Dong-hyouk;Lee, Seong-woo
    • Journal of Advanced Navigation Technology
    • /
    • v.26 no.5
    • /
    • pp.358-364
    • /
    • 2022
  • The Inter Communication System for avionics is in charge of processing all voice signals that internal calls between Pilot and Co-pilot, internal calls between Pilots and Crews, external calls through communication equipment such as Ultra/Very High Frequency Receiver/Transmitter(U/VHF RT), audio signal monitoring for navigation and mission equipment such as VHF Omnidirectional Range/Instrument Landing System(VOR/ILS), Tactical Air Navigation(TACAN), audio signal output for voice recording to Flight Data Recorder(FDR) and Data Transfer System(DTS), and warning/caution audio signal generate about the status and threat of aircraft. Because Inter Communication System for avionics is sensitive to noise in the case of analog audio signals, a redundant design that can protect audio signal from electromagnetic noise inside/outside of aircraft is required for the mission of pilots and crews. In this paper, Normal/Back-up operation mode and redundancy design plan based on digital method for the redundancy of the digital Inter Communication System for avionics and manufacturing, verification results are described.

A Study on the Design and Realization of the Doppler VHF Omnidirectional Radio Virtual Monitoring System (도플러 전방향 표지시설(DVOR) 가상 모니터링 시스템 설계 및 구현에 관한 연구)

  • Kim, Kyung-Tae;Yoon, Jun-Chul;Chang, Hae-Dong;Kang, Suk-Youb;Park, Hyo-Dal
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.265-272
    • /
    • 2011
  • This study designed and manufactured "a DVOR virtual signal generator" to make the monitoring system of preliminary Doppler VHF Omni-directional Radio Range(DVOR) run like its real operation status in a narrow space in order to study "a DVOR virtual monitoring system". The designed and manufactured DVOR virtual signal generator is suitable for the specification of signal that is generated in the currently running equipment. In addition, it is possible to control operation conditions of equipment by using parameter variables, and the circuit construction is largely divided into the input part, the modulation part, the high-gain amplifier, and the power part. "The DVOR virtual monitoring system using the virtual signal designed and implemented in this study is very suitable to be used for low-cost actual education as it can construct the operation status like the real situation in a narrow space without using an actual system like an antenna generating side band.