• Title/Summary/Keyword: VFA Production

Search Result 276, Processing Time 0.027 seconds

Effect of Protein Fractionation and Buffer Solubility of Forage Sources on In Vitro Fermentation Characteristics, Degradability and Gas Production (조사료 자원의 단백질 분획 및 Buffer 추출이 In Vitro 발효 성상, 분해율 및 Gas 생성량에 미치는 효과)

  • Jin, Guang Lin;Shinekhuu, Judder;Qin, Wei-Ze;Kim, Jong-Kyu;Ju, Jong-Kwan;Suh, Seong-Won;Song, Man-Kang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.1
    • /
    • pp.59-74
    • /
    • 2012
  • Buffer solubility and protein fractionation were evaluated from the hays (timothy, alfalfa and klein) and straws (tall fescue and rice), and $In$ $vitro$ trial was conducted to examine the effect of buffer extraction on fermentation characteristics, degradability and gas ($CO_2$ and $CH_4$) production. Buffer soluble protein (SP) content and A fraction in total protein were highest in alfalfa hay as 61% and 41.77%, respectively while lowest in rice straw (42.8% and 19.78%, respectively). No difference was observed in B1 fraction among forages but B2 fraction was slightly increased in klein hay (12.34%) and tall fescue straw (10.05%) compared with other forages (6.34~8.85%). B3 fraction of tall fescue was highest as 38.49% without difference among other forages while C fraction was highest in rice straw. pH in incubation solution was higher in all forages after extraction than before extraction at 3h (P<0.01) and 6h (P<0.05), and pH from hays of timothy and alfalfa was higher than the other forages at 6h (P<0.05) and 12h (P<0.001). Regardless of extraction, ammonia-N concentration from alfalfa hay was increased at all incubation times and extraction effect was appeared only at 3h incubation time (P<0.01). Total VFA concentration from alfalfa hay was highest up to 24h incubation while those from tall fescue straw and rice straw were lowest. Buffer extraction decreased (P<0.01~P<0.001) the total VFA concentration. Acetic acid proportion was increased (P<0.001) before extraction of forages but no difference was found between forages. Propionic acid($C_3$) proportion was also increased(P<0.001) before extraction in all forages than in straws at 3h, 24h and 48h incubations, and $C_3$ from hays were mostly higher (P<0.05) than from straws. Butyric acid proportion, however, was not affected by extraction at most incubation times. Parameter 'a' regarding to the dry matter (DM) degradation was increase (P<0.001) in all forages before extraction, and was decreased (P<0.05) in tall fescue straw and rice straw compared with hays. Parameter 'b' was also increased (P<0.001) before extraction but no difference was found between forages. Effective degradability of DM (EDDM) was higher (P<0.001) before extraction in most forages except for rice straw. Buffer extraction decreased (P<0.05) all parameters (a, b, and c) regrading to the crude protein (CP) degradation but no difference was found between forages. Effective degradation of CP (EDCP) was lower (P<0.05) in straws than in hays. Parameters 'a' and 'b' regarding to the NDF degradation (P<0.01) and effective degradability of NDF (EDNDF, P<0.001) were also higher in forages before extraction than after extraction but no difference was found between forages. Buffer extraction reduced (P<0.05~P<0.001) $CO_2$ production from all the forages uo to 24h incubation and its production was greater (P<0.05~P<0.01) from hays than straws. Methane ($CH_4$) production was also greater (P<0.01~P<0.001) in all forages at all incubation times, and its production was greater (P<0.05) from hays than from straws at most incubation times. Based on the results of the current study, it can be concluded that buffer solubility and CP fractionation might be closely related with $In$ $vitro$ VFA concentration, degradability and gas ($CO_2$ and $CH_4$) production. Thus, measurement of buffer solubility and protein fractionation of forages might be useful to improve TMR availability in the ruminants.

Enhanced hydrogen fermentation of food waste (음식물쓰레기를 이용한 수소발효 시 효율향상에 관한 연구)

  • Han, Sun-Kee;Kim, Hyun-Woo;Shin, Hang-Sik
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.4
    • /
    • pp.105-113
    • /
    • 2003
  • Successful operation of a reactor can be accomplished when it is operated at proper D depending on the state of degradation. Operation at high D leads to the washout of biomass in the reactor while operation at low D leads to product inhibition due to the accumulation of excess VFA. These appear to limit the production of hydrogen to reach a higher level. Operation by D control was performed to improve the efficiency of hydrogen fermentation of food waste. Although simple organic matters were rapidly degraded in the early stage (day 1-2), proper VFA concentration and pH values were kept in the reactor at D of $4.5d^{-1}$, which was previously reported to be optimum initial D. High butyrate/acetate (B/A) ratios over 3.2 were obtained. Without D control, the reduction of simple organic matters after day 2 caused the decrease of VFA production and the increase of pH. Hydrogen production also decreased, as microbial proliferation was less than microbial loss by washout. However, the reactor performance was dramatically improved at D control from 4.5 to $2.3d^{-1}$. It showed the highest B/A ratios over 2.0 among the reactors on day 4-7. The second hydrogen peak appeared on day 4, resulting in the highest fermentation efficiency (70.8%) among the reactors. It was caused by the enhanced degradation of slowly degradable matters. The COD removed was converted to hydrogen (19.3%), VFA (36.5%), and ethanol (15.0%). Therefore, the strategy using D control, depending on the state of degradation, was effective in improving the efficiency of hydrogen fermentation.

  • PDF

Effects of Rumen Protected Choline on In vitro Ruminal Fermentation and Milk Production and Its Composition in Lactating Cows (반추위 보호 Choline이 In vitro 반추위 발효특성과 착유우의 유생산 및 유조성분에 미치는 영향)

  • Park, Byung-Ki;Kim, Byong-Wan;Jang, Hyun-Yong;Shin, Jong-Suh
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.28 no.3
    • /
    • pp.255-264
    • /
    • 2008
  • This study was conducted to evaluate the effects of rumen protected choline on in vitro ruminal fermentation and milk production and its composition in Holstein cows. Experiments were done with three treatment groups, basal diet without any supplement (T1), basal diet+23g/d of mixture of choline and wheat shorts (T2) and basal diet + 25.56 g/d of rumen protected choline (T3). The in vitro ruminal pH and ammonia concentrations were similar for three treatments during all incubation periods except for the in vitro ruminal pH on 3 hr incubation and ammonia concentrations on 9 hr incubation. No significant difference was found in the concentrations of acetate and total-VFA. The propionate and butyrate concentrations were not affected by the rumen protected choline except on 6 hr incubation on which the propionate and butyrate concentrations were intermediate (8.98 mg/dl) and least (3.22 mg/dl), respectively. Higher milk yield and milk fat and lactose were resulted in the rumen protected choline. However, the rumen protected choline did not affect the milk protein, solids not fat, total solids, MUN, somatic cell count. It is concluded that the rumen protected choline can be effective materials to improve the milk production, milk fat and lactose without little change on in vitro ruminal fermentation.

Effects of Halogenated Compounds, Organic Acids and Unsaturated Fatty Acids on In vitro Methane Production and Fermentation Characteristics

  • Choi, N.J.;Lee, S.Y.;Sung, H.G.;Lee, S.C.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.9
    • /
    • pp.1255-1259
    • /
    • 2004
  • The objective of this study was to evaluate the effects of halogenated compounds, organic acids, unsaturated fatty acids and their mixtures on in vitro methane production and fermentative characteristics of mixed rumen microorganisms. Agents used in two in vitro experiments were bromoethanesulfonic acid (BES) and pyromellitic diimide (PMDI) as halogenated compound, fumarate and malate as organic acid, and linoleic acid and linolenic acid as unsaturated fatty acid sources. Ruminal fluid collected from a Holstein steer fed tall fescue and concentrate mixtures was incubated at $39^{\circ}C$ for 48 h with addition of those materials. Single supplementation of halogenated compounds, organic acids or unsaturated fatty acids decreased in vitro methane production (p<0.05). The second experiment was designed to investigate effects of combination of one of halogenated compounds and either organic acids or fatty acids on methane production. Lower concentration of methane and lower A:P ratio were observed with PMDI compared with BES (p<0.01). In general medium pH, VFA, total gas and hydrogen production, and dry matter degradability were affected by addition of the same compounds. In addition, PMDI+malate treatment resulted in the highest molar proportion of propionate, and lowest A:P ratio and methane production (p<0.01). Hydrogen production was highest in PMDI+linolenic acid and lowest in BES+malate treatment (p<0.01). PMDI+malate combination was the most recommendable in reducing methane production without too much influence on digestibility under conditions of present studies.

Influence of Monensin and Virginiamycin on In Vitro Ruminal Fermentation of Ammoniated Rice Straw

  • Kook, K.;Sun, S.S.;Yang, C.J.;Myung, K.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.544-547
    • /
    • 1999
  • The object of this study was to determine the influence of monensin and virginiamycin (VM) on in vitro ruminal fermentation of rice straw or ammoniated rice straw. Rumen fluid was collected from 4 wethers fed 200 g of concentrate supplement with 400 g of untreated (U) or ammoniated (A) rice straw once daily for 28 days. Mixed ruminal microorganisms were incubated in anaerobic media that contained 20% (vol/vol) ruminal fluid and 0.3 g of either U or A rice straw. Monensin and/or VM, dissolved in ethanol, were added in centrifuge tubes at final concentrations of 0, 15, 30, 15+15 and 30+30 ppm of culture fluid. The addition of monensin and VM combination to A rice straw fermentation decreased (p<0.05) the acetate to propionate ratio, total VFA and lactate production, but increased (p<0.05) pH. Total gas production tended to be decreased by the addition of monensin plus VM. Antimicrobial agents decreased $NH_3$ N concentration and dry matter digestibility.

Effects of Replacing Nonfiber Carbohydrates with Nonforage Detergent Fiber from Cassava Residues on Performance of Dairy Cows in the Tropics

  • Kanjanapruthipong, J.;Buatong, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.7
    • /
    • pp.967-972
    • /
    • 2004
  • Four Holstein$\times$Indigenous cows with ruminal canulas were used in a 4$\times$4 Latin square design with 28 d periods to determine the effect of replacing nonforage fiber source (NFFS) from cassava residues for non-fiber carbohydrates (NFC) on ruminal fermentation characteristics and milk production. Dietary treatments contained 17% forage neutral detergent fiber (FNDF) from corn silage and 0, 3, 6 and 9% nonforage NDF from cassava residues and 11% nonforage NDF from other NFFS, so that levels of nonforage NDF were 11, 14, 17 and 20% dry matter (DM). Intakes of DM and net energy for lactation, average daily gain and milk fat percentage were not different (p>0.05). Ruminal pH, ammonia concentrations, acetate to propionate ratios, 24 h in sacco fiber digestibility significantly increased with increasing contents of nonforage NDF from cassava residues. Concentrations of VFA, urinary excretion of purine derivatives, milk protein percentage, production of milk and 4% FCM significantly decreased. These results suggest that NFC in diets is one of the limiting factors affecting productivity of dairy cows in the tropics and thus NFFS is better used as partial replacements for FNDF.

The Effects of Initial pH on VFAs Production of Mesophilic and Thermophilic Acidogenic Fermentation for Food Waste Recycling Wastewater (음폐수의 중온 및 고온 산발효에서 초기 pH가 VFAs 생성에 미치는 영향)

  • Byun, Im-Gyu
    • Journal of Environmental Science International
    • /
    • v.21 no.10
    • /
    • pp.1255-1263
    • /
    • 2012
  • Batch cultivations were performed to evaluate the influences of the initial pH condition on mesophilic and thermophilic acidogenic fermentation with food waste recycling wastewater. In both conditions of mesophilic and thermophilic fermentation, TVFAs production rates were maximized at the initial pH 7 condition as 0.15 and 0.23 g TVFAs/L hr, respectively. And pH was also maintained stably between 6 and 7 during 72hr acidogenic cultivation at both conditions. However, predominant VFA components were different according to reaction temperature conditions. In mesophilic condition, propionic acid which has low conversion efficiency to methane was accumulated up to 1,348 mg/L while acetic and butyric acid were predominant in thermophilic condition. Therefore, thermophilic acidogenic fermentation was superior for the effective VFAs production than mesophilic condition. From the DGGE analysis, the band patterns were different according to the initial pH conditions but the correlations of the each band were increased in similar pH conditions. These results mean that microbial communities were certainly affected by the initial pH condition. Consequently, the adjustment of the initial pH to neutral region and thermophilic operation are needed to enhance acidogenic fermentation of food waste recycling wastewater.

Influence of Applied Voltage for Bioelectrochemical Anaerobic Digestion of Sewage Sludge (하수슬러지의 생물전기화학 혐기성소화에 대한 인가전압의 영향)

  • Kim, Dong-Hyun;Song, Young-Chae;Qing, Feng
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.9
    • /
    • pp.542-549
    • /
    • 2015
  • The bioelectrochemical anaerobic digestion for sewage sludge was attempted at different applied voltages ranged from 0.2 V to 0.4 V. At 0.3 V of the applied voltage, pH and VFAs were at 7.32 and 760 mg COD/L, respectively, which were quite stable. The methane production rate was $1.32L\;CH_4/L.d$, and the methane content in biogas was 73.8%, indicating that the performance of the bioelectrochemical anaerobic digestion could be considerably improved by applying a low voltage. At 0.4 V of the applied voltage, however, the contents of the minor VFA components including formic acid and propionic acid were increased. The methane production rate was reduced to $1.24L\;CH_4/L.d$ and the biogas methane content was also reduced to 72.4%. At 0.2 V of the applied voltage, the pH was decreased to 6.3, and VFAs was accumulated to 5,684 mg COD/L. The contents of propionic acid and butyric acid in the VFAs were considerably increased, The performances in terms of the methane production rate and the biogas methane content were deteriorated. The poor performance of the bioelectrochemical reactor at 0.2 V of the applied voltage was ascribed to the thermodynamic potential lack for the driving of the carbon dioxide reduction into methane at cathode.

Replacement of corn with rice grains did not alter growth performance and rumen fermentation in growing Hanwoo steers

  • Yang, Sungjae;Kim, Byeongwoo;Kim, Hanbeen;Moon, Joonbeom;Yoo, Daekyum;Baek, Youl-Chang;Lee, Seyoung;Seo, Jakyeom
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.2
    • /
    • pp.230-235
    • /
    • 2020
  • Objective: This study was realized to evaluate the nutritional value of rice grains as a replacement for corn grains in the diet of growing Hanwoo steers. Methods: Two experimental diets were prepared: i) Corn total mixed ration (TMR) consisting of 20% corn grains and ii) Rice TMR consisting of 20% rice grains, in a dry matter (DM) basis. These treatments were used for in vitro rumen fermentation and in vivo growth trials. In the rumen fermentation experiment, the in vitro DM digestibility (IVDMD), in vitro crude protein digestibility (IVCPD), in vitro neutral detergent fiber digestibility, pH, ammonia nitrogen, and volatile fatty acids (VFA) were estimated at 48 h, and the gas production was measured at 3, 6, 12, 24, and 48 h. Twenty four growing Hanwoo steers (9 months old; body weight [BW]: 259±13 kg) were randomly divided into two treatment groups and the BW, dry matter intake (DMI), average daily gain (ADG), and feed conversion ratio (FCR) were measured. Results: The in vitro experiment showed that the IVDMD, IVCPD, and VFA production of the Rice TMR were higher than those of the Corn TMR (p<0.05). The growth trial showed no differences (p>0.05) in the final BW, ADG, DMI, and FCR between the two TMRs. Conclusion: The use of rice grains instead of corn grains did not exhibit any negative effects on the rumen fermentation or growth performance, thereby rice grains with a DM of less than 20% could be used as a starch source in the diet of growing steers.

Influence of Transgenic Corn on the In vitro Rumen Microbial Fermentation

  • Sung, Ha Guyn;Min, Dong Myung;Kim, Dong Kyun;Li, De Yun;Kim, Hyun Jin;Upadhaya, Santi Devi;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.12
    • /
    • pp.1761-1768
    • /
    • 2006
  • In this study, the comparative effects of transgenic corn (Mon 810 and Event 176) and isogenic corn (DK729) were investigated for their influence on in vitro rumen fermentation. This study consisted of three treatments with 0.25 g rice straw, 0.25 g of corn (Mon810/Event176/DK 729) mixed with 30 ml rumen fluid-basal medium in a serum bottle. They were prepared in oxygen free conditions and incubated at $39^{\circ}C$ in a shaking incubator. The influence of transgenic corn on the number of bacterial population, F. succinogenes (cellulolytic) and S. bovis (amylolytic), was quantified using RT-PCR. Fermentative parameters were measured at 0, 2, 4, 8, 12 and 24 h and substrate digestibility was measured at 12 and 24 h. No significant differences were observed in digestibility of dry matter, NDF, ADF at 12 and 24 h for both transgenic and isogenic form of corns (p>0.05) as well as in fermentative parameters. Fluid pH remained unaffected by hybrid trait and decreased with VFA accumulation as incubation time progressed. No influence of corn trait itself was seen on concentration of total VFA, acetic, propionic, butyric and valeric acids. There were no significant differences (p<0.05) in total gas production, composition of gas (methane and hydrogen) at all times of sampling, as well as in NH3-N production. Bacterial quantification using RT-PCR showed that the population number was not affected by transgenic corn. From this study it is concluded that transgenic corn (Mon810 and Event 176) had no adverse effects on rumen fermentation and digestibility compared to isogenic corn. However, regular monitoring of these transgenic feeds is needed by present day researchers to enable consumers with the option to select their preferred food source for animal or human consumption.