• 제목/요약/키워드: VERTICAL REACTION FORCE

검색결과 212건 처리시간 0.025초

Faster Detection of Step Initiation for the Lower Limb Exoskeleton with Vertical GRF Events

  • Cha, Dowan;Kang, Daewon;Kim, Kab Il;Kim, Kyung-Soo;Lee, Bum-Joo;Kim, Soohyun
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.733-738
    • /
    • 2014
  • We propose a new approach called as a peak time approach for faster detection of step initiation for the lower limb exoskeleton. As faster detection of step initiation is an important criterion in evaluating the lower limb exoskeleton, many studies have investigated approaches to detect step initiation faster, including using electromyography, the center of pressure, the heel-off time and the toe-off time. In this study, we will utilize vertical ground reaction force events to detect step initiation, and compare our approach with prior approaches. Additionally, we will predict the first step's heel strike time with vertical ground reaction force events from multiple regression equations to support our approach. The lower limb exoskeleton should assist the operator's movement much faster and more reliably with our approach.

스포츠 에어로빅스 팔착지 동작의 지면 반력 분석 (Analysis of the Ground Reaction Force of Arm Landing during Sports Aerobics)

  • 유실
    • 한국운동역학회지
    • /
    • 제12권1호
    • /
    • pp.115-124
    • /
    • 2002
  • The purpose of this study is to analyze the ground reaction force of arm landing on arm and leg during sports aerobics. Subjects of this study were total 10 players of 5 males and 5 females who have are domain sports aerobics medalists more than the third place in national tournaments. The subjects jumped between the two ground reaction force analyzers, while landing their right hand on the front platform(#1) and their right leg on the rear platform(#2), and the data frequency was set to 200Hz. Findings of this study are as follows; More than 3 times of impact peak force of vertical reaction force acted on arm joint than on leg joint. And, when ground reaction force on foot increased, ground reaction force on hand decreased. 3 impact peaks of curve of ground reaction force were found - Impact Peak 1 incurred on the time the palm lands on the ground, Impact Peak 2 absorbing shock secondarily on wrist joint, and Active Peak incurred on the time of holding the weight while pushing out the severly bent elbow joint.

장애물을 걸어서 넘어갈때 측정한 발반력에 대한 생체역학적 해석 (A Biomechanical Analysis of Foot-Floor Reaction Forces Measured When Walking over an Obstacle)

  • 윤종일;손권;이민철
    • 대한기계학회논문집
    • /
    • 제17권7호
    • /
    • pp.1864-1873
    • /
    • 1993
  • A biomechanical approach was carried out to analyze foot-floor reaction forces acting on five male subjects performing a walking task. The task analyzed was walking over an obstacle with the right bare foot. The foot-floor reaction data were measured from a force plate, and then processed using a software developed. The source program was coded in the C language for easier on-line data acquisition and graphic displays. High repeatability was found in the reaction data acquired from three trials by each subject. For obstacle height from 0 to 25 cm, the maximum in reaction force reached up to 1.048 BW in the vertical, 0.174 BW in the anterior-posterior, and 0.054 BW in the medio-lateral components, respectively. A quantity was defined by the difference between two vertical reaction values, and this quantity was found to be proportional to the obstacle height. It was also shown that the whole body motion could be predicted the measured foot-floor reaction data.

사범계 체육전공 대학생의 높이뛰기 기록에 영향을 미치는 운동역학적 변인 분석 (An Analysis of Kinetic Variables That Affect High Jump Record of Students Who were Majoring in Physical Education)

  • 조종희;주명덕
    • 한국운동역학회지
    • /
    • 제20권1호
    • /
    • pp.109-116
    • /
    • 2010
  • This study aims to comparatively analyze kinetic variables that affect high jump records and thus to provide the basic data for enhancement of physical education teachers' teaching skills and expertise. 10 students who were majoring in physical education in a college of education - five males and five females - were chosen for the experiment in which the 3D image analyzer and ground reaction force measuring unit were adopted. The kinetic variables of the groups, the characteristics and differences were analyzed, and the correlation between each variable and record in each group was examined. The results are as follows: As to the height of center of gravity from one step before stamping to landing, the vertical velocity of the center of gravity at take off, the vertical velocity of the limbs at take off, the angles of the hip joint and ankle joint of the jumping leg, it turned out that male were better than female. As to the angles of the hip joint and ankle joint of the lead leg, female recorded higher values than male. As to the maximum vertical ground reaction force, the maximum horizontal ground reaction force, the vertical impulse, it turned out that male were better than female.

오래 달리기로 인한 피로가 지면반력 성분에 미치는 영향 (Effect of a Prolonged-run-induced Fatigue on the Ground Reaction Force Components)

  • 류지선
    • 한국운동역학회지
    • /
    • 제23권3호
    • /
    • pp.225-233
    • /
    • 2013
  • The purpose of this study was to estimate the potential injury via analyzing ground reaction force components that were resulted from a prolonged-run-induced fatigue. For the present study, passive and active components of the vertical ground reaction force were determined from time and frequency domain. Shear components of GRF also were calculated from time and frequency domain. Twenty subjects with rear foot contact aged 20 to 30, no experience in injuries of the extremities, were requested to run on the instrumented tread-mill for 160 minutes at their preference running speed. GRF signals for 10 strides were collected at 5, 35, 65, 95, 125, and 155 minute during running. In conclusions, there were no significant difference in the magnitude of passive force, impact load rate, frequency of the passive and active components in vertical GRF between running times except the magnitude of active force (p<.05). The magnitude of active force was significantly decreased after 125 minute run. The magnitude of maximum peak and maximum frequency of the mediolateral GRF at heel strike and toe-off have not been changed with increasing running time. The time up to the maximum peak of the anteroposterior at heel-strike moment tend to decrease (p<.05), but the maximum peak and frequency of that at heel and toe-off moment didn't depend significantly on running time.

Effects of Different Chair Heights on Ground Reaction Force and Trunk Flexion during Sit-to-Stand in the Elderly

  • Lee, Na-Kyung;Lee, Myoung-Hee
    • The Journal of Korean Physical Therapy
    • /
    • 제26권6호
    • /
    • pp.449-452
    • /
    • 2014
  • Purpose: The purpose of this study was to analyze the coordination between trunk flexion and lower limb extension contributing to vertical propulsion during sit-to-stand (STS) at different chair heights in the elderly. Methods: Ten elderly subjects were asked to stand up at their natural speed from different chair heights : (1) $90^{\circ}$ knee flexion; (2) $100^{\circ}$ knee flexion; (3) $110^{\circ}$ knee flexion; and (4) $120^{\circ}$ knee flexion. A standard chair without a backrest or armrests was used in this study. To remove inertial effects of upper limb movements, subjects were asked to stand up from a chair with their arms crossed at the chest. Mean of results of three trials were used in the analysis at different knee flexion angles. Distances moved by the shoulder for compensatory trunk movement was recorded by motion analysis and vertical force was recorded under foot using force plates. Distances moved by the shoulder and vertical ground reaction force measurements were analyzed using repeated ANOVA. Results: Distances moved by the shoulder significantly decreased with higher chair (p<0.05). Vertical forces were not significant difference on chair heights (p>0.05), but results of pairwise comparisons for vertical force revealed significant difference between $90^{\circ}$ knee flexion and $120^{\circ}$ knee flexion (p<0.05). Conclusion: Trunk movement is probably used as a compensatory mechanism at low chair heights to increase lift-off from sitting by the elderly.

The Immediate Effects of Ankle Restriction Using an Elastic Band on Ground Reaction Force during a Golf Swing

  • Yi, Kyungock;Kim, OkJa
    • 한국운동역학회지
    • /
    • 제26권2호
    • /
    • pp.191-195
    • /
    • 2016
  • Purpose: The purpose of this study was to analyze the immediate effects of ankle restriction with an elastic band on ground reaction force during a golf swing. Method: There were five subjects who were teaching pros with an average golf score of 75. A force platform (9281B, Switzerland) was used. The independent variable was the presence of an elastic band. The dependent variables were three-dimensional ground reaction forces to analyze the transfer of momentum with the timing, control and coordination of the three forces. A paired t-test within subject repeated measure design was used via an SPSS 20.0. Results: Wearing an elastic band around one's ankles significantly makes shorter time differences between the moment of cross anterior / posterior forces and vertical force and median value of anterior / posterior forces during the backswing, between medial and lateral maximum and anterior / posterior force from the top of the back swing to the mid down swing, and creates an anterior / posterior maximum force. Conclusion: Wearing an elastic band around one's ankles affects control and coordination between three dimensional forces, and anterior force power according to each phase of the golf swing.

면진장치 설치각도에 따른 아치구조물의 지진응답 (Seismic Response of Arch Structure with Base Isolation Device Depending on Installation Angle)

  • 김기철;이준호
    • 한국공간구조학회논문집
    • /
    • 제22권1호
    • /
    • pp.25-32
    • /
    • 2022
  • The seismic behaviors of the arch structure vary according to the rise-span ratio of the arch structure. In this study, the rise-span ratio (H/L) of the example arch structure was set to 1/4, 1/6, and 1/8. And the installation angle of the seismic isolator was set to 15°, 30°, 45°, 60° and 90°. The installation angles of the seismic isolator were set by analyzing the horizontal and vertical reaction forces according to the rise-span ratio of the arch structure. Due to the geometrical and dynamic characteristics of the arch structure, the lower the rise-span ratio, the greater the horizontal reaction force of the static load, but the smaller the horizontal reaction force of the dynamic load. And if the seismic isolator is installed in the direction of the resultant force of the reaction forces caused by the seismic load, the horizontal seismic response becomes small. Also, as the installation angle of the seismic isolator increases, the hysteresis behavior of the seismic isolator shows a plastic behavior, and residual deformation appears even after the seismic load is removed. In the design of seismic isolators for seismic response control of large space structures such as arch structures, horizontal and vertical reaction forces should be considered.

Modeling dynamic interactions between the support foot and the ground in bipedal walking

  • Jung, Moon-Ryul
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제1권2호
    • /
    • pp.201-212
    • /
    • 1995
  • This paper presents a new method of dynamics-based synthesis of bipedal, especially human, walking. The motion of the body at a time point is determined by ground reaction force and torque under the support foot and joint torques of the body at that time point. Motion synthesis involves specifying conditions that constrain ground reaction force and torque, and joint torques so that a given desired motion may be achieved. There are conditions on a desired motion which end-users can think of easily, e.g. the goal position and orientation of the swing foot for a single step and the time period of a single step. In this paper, we specify constraints on the motion of the support foot, which end-users would find difficult to specify. They are constraints which enforce non-sliding, non-falling, and non-spinning the support foot. They are specified in terms of joint torques and ground reaction force and torque. To satisfy them, both joint torques and ground reaction force and torque should be determined appropriately. The constraints on the support foot themselves do not give any good clues as to how to determine ground reaction force and torque. For that purpose, we specify desired trajectories of the application point of vertical ground reaction force (ground pressure) and the application point of horizontal ground reaction (friction) force. The application points of vertical pressure and friction force are good control variables, because they are indicators to kinds of walking motions to synthesize. The synthesis of a bipedal walking motion, then, consists of finding a trajectory of joint torques to achieve a given desired motion, so that the constraints are satisfied under the condition of the prescribed center of pressure and center of friction. Our approach is distinguished from many other approaches, e.g. the inverted-pendulum approach, in that it captures and formulates dynamics of the support foot and reasonable constraints on it.

  • PDF

Correlation among Functional Leg Length Discrepancy, Muscle Activity, Muscle Contraction Onset Time and Vertical Ground Reaction Force during Simple Lifting Task

  • Jin, Ha Young;Han, Jin Tae
    • The Journal of Korean Physical Therapy
    • /
    • 제34권4호
    • /
    • pp.175-180
    • /
    • 2022
  • Purpose: Leg length discrepancy causes the posture deformation, gait asymmetry, and lower back pain. The purpose of this study is to investigate the correlation among functional leg length discrepancy (FLLD), muscle activity, muscle contraction onset time and vertical ground reaction force (vGRF) during simple lifting task. Methods: Thirty-nine subjects participated in this study. FLLD was measured from the umbilicus to medial malleolus of left and right leg using a tape. The subjects performed to lift a 10 kg box from the floor to chest. The muscle activity and muscle contraction onset time of rectus abdominis, erector spinae and rectus femoris was measured using EMG system and vGRF was measured by two force plate. Pearson correlation was used to fine out the correlation among FDDL, muscle activity, muscle contraction onset time and vGRF during simple lifting task. Results: Correlation between FLLD and difference of muscle activity of short-long side was very high (r>0.9) during simple lifting task. Correlation between FLLD and difference of muscle contraction onset time of short-long side was very high (r>0.9) during simple lifting task. And correlation between FLLD and difference of vGRF of short-long side was high (r>0.7) during simple lifting task. Conclusion: This study suggests that there is high correlation between FLLD and muscle activity, muscle contraction onset time, and ground reaction force during simple lifting task. Therefore, FLLD could negatively affect the postural balance.