• Title/Summary/Keyword: VEGETATION Sensor

Search Result 129, Processing Time 0.023 seconds

Bi-directional Reflectance Effects on Mangrove Classification of IKONOS Multi-angular Images

  • Rubio, M.C.D.;Nadaoka, K.;Paringit, E.C.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.4-6
    • /
    • 2003
  • Optical signals from an object may vary at different conditions caused by differences in light source and sensor position. Knowledge of these variations is necessary to enable calibration of the satellite images and confirmation of the sun and sensor angles influences of the spectral signals from the objects. With the use high -resolution Ikonos$^{TM}$ multi-angular images, the bi- directional reflectance effects of mangrove trees were observed when three datasets were compared. The influence of bi- directional reflectance may affect the accuracy of interpreting satellite imagery and obtaining biophysical parameters mangrove and other vegetation by indirect means.

  • PDF

Assessment of Lodged Damage Rate of Soybean Using Support Vector Classifier Model Combined with Drone Based RGB Vegetation Indices (드론 영상 기반 RGB 식생지수 조합 Support Vector Classifier 모델 활용 콩 도복피해율 산정)

  • Lee, Hyun-jung;Go, Seung-hwan;Park, Jong-hwa
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1489-1503
    • /
    • 2022
  • Drone and sensor technologies are enabling digitalization of agricultural crop's growth information and accelerating the development of the precision agriculture. These technologies could be able to assess damage of crops when natural disaster occurs, and contribute to the scientification of the crop insurance assessment method, which is being conducted through field survey. This study was aimed to calculate lodged damage rate from the vegetation indices extracted by drone based RGB images for soybean. Support Vector Classifier (SVC) models were considered by adding vegetation indices to the Crop Surface Model (CSM) based lodged damage rate. Visible Atmospherically Resistant Index (VARI) and Green Red Vegetation Index (GRVI) based lodged damage rate classification were shown the highest accuracy score as 0.709 and 0.705 each. As a result of this study, it was confirmed that drone based RGB images can be used as a useful tool for estimating the rate of lodged damage. The result acquired from this study can be used to the satellite imagery like Sentinel-2 and RapidEye when the damages from the natural disasters occurred.

Gap-Filling of Sentinel-2 NDVI Using Sentinel-1 Radar Vegetation Indices and AutoML (Sentinel-1 레이더 식생지수와 AutoML을 이용한 Sentinel-2 NDVI 결측화소 복원)

  • Youjeong Youn;Jonggu Kang;Seoyeon Kim;Yemin Jeong;Soyeon Choi;Yungyo Im;Youngmin Seo;Myoungsoo Won;Junghwa Chun;Kyungmin Kim;Keunchang Jang;Joongbin Lim;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1341-1352
    • /
    • 2023
  • The normalized difference vegetation index (NDVI) derived from satellite images is a crucial tool to monitor forests and agriculture for broad areas because the periodic acquisition of the data is ensured. However, optical sensor-based vegetation indices(VI) are not accessible in some areas covered by clouds. This paper presented a synthetic aperture radar (SAR) based approach to retrieval of the optical sensor-based NDVI using machine learning. SAR system can observe the land surface day and night in all weather conditions. Radar vegetation indices (RVI) from the Sentinel-1 vertical-vertical (VV) and vertical-horizontal (VH) polarizations, surface elevation, and air temperature are used as the input features for an automated machine learning (AutoML) model to conduct the gap-filling of the Sentinel-2 NDVI. The mean bias error (MAE) was 7.214E-05, and the correlation coefficient (CC) was 0.878, demonstrating the feasibility of the proposed method. This approach can be applied to gap-free nationwide NDVI construction using Sentinel-1 and Sentinel-2 images for environmental monitoring and resource management.

Estimation of Chinese Cabbage Growth by RapidEye Imagery and Field Investigation Data

  • Na, Sangil;Lee, Kyoungdo;Baek, Shinchul;Hong, Sukyoung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.556-563
    • /
    • 2015
  • Chinese cabbage is one of the most important vegetables in Korea and a target crop for market stabilization as well. Remote sensing has long been used as a tool to extract plant growth, cultivated area and yield information for many crops, but little research has been conducted on Chinese cabbage. This study refers to the derivation of simple Chinese cabbage growth prediction equation by using RapidEye derived vegetation index. Daesan-myeon area in Gochang-gun, Jeollabuk-do, Korea is one of main producing district of Chinese cabbage. RapidEye multi-spectral imagery was taken on the Daesan-myeon five times from early September to late October during the Chinese cabbage growing season. Meanwhile, field reflectance spectra and five plant growth parameters, including plant height (P.H.), plant diameter (P.D.), leaf height (L.H.), leaf length (L.L.) and leaf number (L.N.), were measured for about 20 plants (ten plants per plot) for each ground survey. The normalized difference vegetation index (NDVI) for each of the 20 plants was measured using an active plant growth sensor (Crop $Circle^{TM}$) at the same time. The results of correlation analysis between the vegetation indices and Chinese cabbage growth data showed that NDVI was the most suited for monitoring the L.H. (r=0.958~0.978), L.L. (r=0.950~0.971), P.H. (r=0.887~0.982), P.D. (r=0.855~0.932) and L.N. (r=0.718~0.968). Retrieval equations were developed for estimating Chinese cabbage growth parameters using NDVI. These results obtained using the NDVI is effective provided a basis for establishing retrieval algorithm for the biophysical properties of Chinese cabbage. These results will also be useful in determining the RapidEye multi-spectral imagery necessary to estimate parameters of Chinese cabbage.

The evaluation of Spectral Vegetation Indices for Classification of Nutritional Deficiency in Rice Using Machine Learning Method

  • Jaekyeong Baek;Wan-Gyu Sang;Dongwon Kwon;Sungyul Chanag;Hyeojin Bak;Ho-young Ban;Jung-Il Cho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.88-88
    • /
    • 2022
  • Detection of stress responses in crops is important to diagnose crop growth and evaluate yield. Also, the multi-spectral sensor is effectively known to evaluate stress caused by nutrient and moisture in crops or biological agents such as weeds or diseases. Therefore, in this experiment, multispectral images were taken by an unmanned aerial vehicle(UAV) under field condition. The experiment was conducted in the long-term fertilizer field in the National Institute of Crop Science, and experiment area was divided into different status of NPK(Control, N-deficiency, P-deficiency, K-deficiency, Non-fertilizer). Total 11 vegetation indices were created with RGB and NIR reflectance values using python. Variations in nutrient content in plants affect the amount of light reflected or absorbed for each wavelength band. Therefore, the objective of this experiment was to evaluate vegetation indices derived from multispectral reflectance data as input into machine learning algorithm for the classification of nutritional deficiency in rice. RandomForest model was used as a representative ensemble model, and parameters were adjusted through hyperparameter tuning such as RandomSearchCV. As a result, training accuracy was 0.95 and test accuracy was 0.80, and IPCA, NDRE, and EVI were included in the top three indices for feature importance. Also, precision, recall, and f1-score, which are indicators for evaluating the performance of the classification model, showed a distribution of 0.7-0.9 for each class.

  • PDF

Crop Monitoring Technique Using Spectral Reflectance Sensor Data and Standard Growth Information (지상 고정형 작물 원격탐사 센서 자료와 표준 생육정보를 융합한 작물 모니터링 기법)

  • Kim, Hyunki;Moon, Hyun-Dong;Ryu, Jae-Hyun;Kwon, Dong-Won;Baek, Jae-Kyeong;Seo, Myung-Chul;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1199-1206
    • /
    • 2021
  • Accordingly, attention is also being paid to the agricultural use of remote sensing technique that non-destructively and continuously detects the growth and physiological status of crops. However, when remote sensing techniques are used for crop monitoring, it is possible to continuously monitor the abnormality of crops in real time. For this, standard growth information of crops is required and relative growth considering the cultivation environment must be identified. With the relationship between GDD (Growing Degree Days), which is the cumulative temperature related to crop growth obtained from ideal cultivation management, and the vegetation index as standard growth information, compared with the vegetation index observed with the spectralreflectance sensor(SRSNDVI & SRSPRI) in each rice paddy treated with standard cultivation management and non-fertilized, it was quantitatively identified as a time series. In the future, it is necessary to accumulate a database targeting various climatic conditions and varieties in the standard cultivation management area to establish a more reliable standard growth information.

Radiometric Characteristics of Geostationary Ocean Color Imager (GOCI) for Land Applications

  • Lee, Kyu-Sung;Park, Sung-Min;Kim, Sun-Hwa;Lee, Hwa-Seon;Shin, Jung-Il
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.3
    • /
    • pp.277-285
    • /
    • 2012
  • The GOCI imagery can be an effective alternative to monitor short-term changes over terrestrial environments. This study aimed to assess the radiometric characteristics of the GOCI multispectral imagery for land applications. As an initial approach, we compared GOCI at-sensor radiance with MODIS data obtained simultaneously. Dynamic range of GOCI radiance was larger than MODIS over land area. Further, the at-sensor radiance over various land surface targets were tested by vicarious calibration. Surface reflectance were directly measured in field using a portable spectrometer and indirectly derived from the atmospherically corrected MODIS product over relatively homogeneous sites of desert, tidal flat, bare soil, and fallow crop fields. The GOCI radiance values were then simulated by radiative transfer model (6S). In overall, simulated radiance were very similar to the actual radiance extracted from GOCI data. Normalized difference vegetation index (NDVI) calculated from the GOCI bands 5 and 8 shows very close relationship with MODIS NDVI. In this study, the GOCI imagery has shown appropriate radiometric quality to be used for various land applications. Further works are needed to derive surface reflectance over land area after atmospheric correction.

Land cover classification of a non-accessible area using multi-sensor images and GIS data (다중센서와 GIS 자료를 이용한 접근불능지역의 토지피복 분류)

  • Kim, Yong-Min;Park, Wan-Yong;Eo, Yang-Dam;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.5
    • /
    • pp.493-504
    • /
    • 2010
  • This study proposes a classification method based on an automated training extraction procedure that may be used with very high resolution (VHR) images of non-accessible areas. The proposed method overcomes the problem of scale difference between VHR images and geographic information system (GIS) data through filtering and use of a Landsat image. In order to automate maximum likelihood classification (MLC), GIS data were used as an input to the MLC of a Landsat image, and a binary edge and a normalized difference vegetation index (NDVI) were used to increase the purity of the training samples. We identified the thresholds of an NDVI and binary edge appropriate to obtain pure samples of each class. The proposed method was then applied to QuickBird and SPOT-5 images. In order to validate the method, visual interpretation and quantitative assessment of the results were compared with products of a manual method. The results showed that the proposed method could classify VHR images and efficiently update GIS data.

Estimation of Forest LAI in Close Canopy Situation Using Optical Remote Sensing Data

  • Lee, Kyu-Sung;Kim, Sun-Hwa;Park, Ji-Hoon;Kim, Tae-Geun;Park, Yun-Il;Woo, Chung-Sik
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.305-311
    • /
    • 2006
  • Although there have been several attempts to estimate forest LAI using optical remote sensor data, there are still not enough evidences whether the NDVI is effective to estimate forest LAI, particularly in fully closed canopy situation. In this study, we have conducted a simple correlation analysis between LAI and spectral reflectance at two different settings: 1) laboratory spectral measurements on the multiple-layers of leaf samples and 2) Landsat ETM+ reflectance in the close canopy forest stands with fieldmeasured LAI. In both cases, the correlation coefficients between LAI and spectral reflectance were higher in short-wave infrared (SWIR) and visible wavelength regions. Although the near-IR reflectance showed positive correlations with LAI, the correlations strength is weaker than in SWIR and visible region. The higher correlations were found with the spectral reflectance data measured on the simulated vegetation samples than with the ETM+ reflectance on the actual forests. In addition, there was no significant correlation between the forest.LAI and NDVI, in particular when the LAI values were larger than three. The SWIR reflectance may be important factor to improve the potential of optical remote sensor data to estimate forest LAI in close canopy situation.

Application of Hyperion Hyperspectral Remote Sensing Data for Wildfire Fuel Mapping

  • Yoon, Yeo-Sang;Kim, Yong-Seung
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.1
    • /
    • pp.21-32
    • /
    • 2007
  • Fire fuel map is one of the most critical factors for planning and managing the fire hazard and risk. However, fuel mapping is extremely difficult because fuel properties vary at spatial scales, change depending on the seasonal situations and are affected by the surrounding environment. Remote sensing has potential to reduce the uncertainty in mapping fuels and offers the best approach for improving our abilities. Especially, Hyperspectral sensor have a great potential for mapping vegetation properties because of their high spectral resolution. The objective of this paper is to evaluate the potential of mapping fuel properties using Hyperion hyperspectral remote sensing data acquired in April, 2002. Fuel properties are divided into four broad categories: 1) fuel moisture, 2) fuel green live biomass, 3) fuel condition and 4) fuel types. Fuel moisture and fuel green biomass were assessed using canopy moisture, derived from the expression of liquid water in the reflectance spectrum of plants. Fuel condition was assessed using endmember fractions from spectral mixture analysis (SMA). Fuel types were classified by fuel models based on the results of SMA. Although Hyperion imagery included a lot of sensor noise and poor performance in liquid water band, the overall results showed that Hyperion imagery have good potential for wildfire fuel mapping.