Lee, Geun Sang;Cho, Gi Sung;Hwang, Jee Wook;Kim, Pyoung Kwon
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.40
no.2
/
pp.135-144
/
2022
Since vegetation provides humans with various ecological spaces and is also very important in terms of water resources and climatic environment, many vegetation monitoring studies using vegetation indexes based on near infrared sensors have been conducted. Therefore, if the near infrared sensor is not provided, the vegetation monitoring study has a practical problem. In this study, to improve this problem, the NDVI (Normalized Difference Vegetation Index) was used as a reference to evaluate the accuracy of the vegetation index based on the optical sensor. First, the Kappa coefficient was calculated by overlapping the vegetation survey point surveyed in the field with the NDVI. As a result, the vegetation area with a threshold value of 0.6 or higher, which has the highest Kappa coefficient of 0.930, was evaluated based on optical sensor based vegetation index accuracy. It could be selected as standard data. As a result of selecting NDVI as reference data and comparing with vegetation index based on optical sensor, the Kappa coefficients at the threshold values of 0.04, 0.08, and 0.30 or higher were the highest, 0.713, 0.713, and 0.828, respectively. In particular, in the case of the RGBVI (Red Green Red Vegetation Index), the Kappa coefficient was high at 0.828. Therefore, it was found that the vegetation monitoring study using the optical sensor is possible even in environments where the near infrared sensor is not available.
This paper presents a study on the Internet of Things based low-power wireless sensor networks for remote monitoring of wildlife ecosystem due to climate change. Especially, it is targeting the wild vegetation communities ecological monitoring. First, we performed a pre-test and analysis for selecting the appropriate frequency for the sensor network to collect and deliver information reliably in harsh propagation environment of the forest area, and selected for sensors for monitoring wild vegetation communities on the basis of considerations for selecting the best sensor. In addition, we have presented the platform concept and hierarchical function structures for effectively monitoring, analyzing and predicting of ecosystem changes, to apply the Internet of Things in the ecological monitoring area. Based on this, this paper presents the system architecture and design of the Internet of Things based low-power wireless sensor networks for monitoring the ecosystem of the wild vegetation communities. Finally, we constructed and operated the test-bed applied to real wild trees, using the developed prototype based on the design.
There is an increasing need to use data from different sensors in order to maximize the chances of obtaining a cloud-free image and to meet timely requirements for information. However, the use of data from multiple sensor systems is depending on comprehensive relationships between sensors of different types. Indeed, a study of inter-sensor relationships is well advanced in the effective use of remotely sensed data from multiple sensors. This paper was concerned with relationships between sensors of different types for vegetation indices (VI). The study was conducted using IKONOS and Landsat-7 ETM+ images. IKONOS and Landsat-7 ETM+ image of the same or about the same dates were acquired. The Landsat-7 ETM+ images were resampled in order to make them coincide with the pixel sizes of IKONOS. Inter-relationships of vegetation indices between images were performed using at-satellite reflectance obtained by converting image digital number (DN). All images were applied to topographic normalization method in order to reduce topographic effect in digital imagery. Also, Inter-sensor model equations between two sensors were developed and applied to other study region. In the result, the relational equations can be used to compute or interpret VI of one sensor using the VI of another sensor.
Drivable area detection is a major task in advanced driver assistance systems. For drivable area detection, several studies have proposed vision-sensor-based approaches. However, conventional drivable area detection methods that use vision sensors are not suitable for environments with changes in road elevation. In addition, if the boundary between the road and vegetation is not clear, judging a vegetation area as a drivable area becomes a problem. Therefore, this study proposes an accurate method of detecting drivable areas in environments in which road elevations change and vegetation exists. Experimental results show that when compared to the conventional method, the proposed method improves the average accuracy and recall of drivable area detection on the KITTI vision benchmark suite by 3.42%p and 8.37%p, respectively. In addition, when the proposed vegetation area removal method is applied, the average accuracy and recall are further improved by 6.43%p and 9.68%p, respectively.
Since SPOT4 satellite contained VEGETATION 1 sensor launched, the noise in VEGETATION data was occasionally arisen a difficulty for the data traitement. Blind line noise types were studied in VEGETATION-l short wave infrared channel(SWIR). In order to provide a precis product, the procedure for removing this noise is strongly recommended. In the case that the blind values are clearly distinguished from contamination-free values a simple threshold method was applied, while a changeable threshold method was used for the blind value mixed with contamination-free values. New algorithm presented in this study is consists of two method for each type of SWIR blind. After removing blind line, there were again some residual pixels of blind, because the threshold is not determinated sufficiently low. Lower threshold could remove the blind line as well as the contamination-free pixels. Nevertheless, the results showed a good qualitative improvement as compared with other algorithm.
Data composite methods have been typically applied to satellite-based vegetation index(VI) data to continuously acquire vegetation greenness over the land surface. Data composites are useful for construction of long-term archives of vegetation indices by minimizing missing data or contamination from noise. In addition, if multi-sensor vegetation indices that are acquired during the same composite periods are used interchangeably, data stability and continuity may be significantly enhanced. This study evaluated the influences of sensor geometry on MODIS vegetation indices and investigated data compatibility of two difference vegetation indices, the Normalized Difference Vegetation Index(NDVI) and the Enhanced Vegetation Index(EVI), for potential improvement of long-term data construction. Relationships between NDVI and EVI turned out statistically significant with variations among vegetation covers. Due to their curvilinear relationships, NDVI became saturated and leveled off as EVI reached high ranges. Correlation coefficients between Terra- and Aqua-based vegetation indices ranged from 0.747 to 0.963 for EVI, and from 0.641 to 0.880 for NDVI, showing better compatibility for EVI compared to NDVI. In-depth analyses of VI outliers that deviated from regression equations constructed from the two different sensors remain as a future study to improve their compatibility.
In recent years, application of UAV(Unmanned Aerial Vehicle) to seed sowing and pest control has been actively carried out in the field of agriculture. In this study, UAS(Unmanned Aerial System) is constructed by combining image sensor of various wavelength band and SfM((Structure from Motion) based image analysis technique in UAV. Utilization of UAS based vegetation survey was investigated and the applicability of precision farming was examined. For this purposes, a UAS consisting of a combination of a VIS_RGB(Visible Red, Green, and Blue) image sensor, a modified BG_NIR(Blue Green_Near Infrared Red) image sensor, and a TIR(Thermal Infrared Red) sensor with a wide bandwidth of $7.5{\mu}m$ to $13.5{\mu}m$ was constructed for a low cost UAV. In addition, a total of ten vegetation indices were selected to investigate the chlorophyll, nitrogen and water contents of plants with visible, near infrared, and infrared wavelength's image sensors. The images of each wavelength band for the test area were analyzed and the correlation between the distribution of vegetation index and the vegetation index were compared with status of the previously surveyed vegetation and ground cover. The ability to perform vegetation state detection using images obtained by mounting multiple image sensors on low cost UAV was investigated. As the utility of UAS equipped with VIS_RGB, BG_NIR and TIR image sensors on the low cost UAV has proven to be more economical and efficient than previous vegetation survey methods that depend on satellites and aerial images, is expected to be used in areas such as precision agriculture, water and forest research.
Lee Kyu-Sung;Kim Sun-Hwa;Ma Jeong-Rim;Kook Min-Jung;Shin Jung-Il;Eo Yang-Dam;Lee Yong-Woong
Korean Journal of Remote Sensing
/
v.22
no.3
/
pp.175-182
/
2006
Because of the phenological variation of vegetation growth in temperate region, it is often difficult to accurately assess the surface conditions of agricultural croplands, grasslands, and disturbed forests by multi-spectral remote sensor data. In particular, the spectral similarity between soil and dry vegetation has been a primary problem to correctly appraise the surface conditions during the non-growing seasons in temperature region. This study analyzes the spectral characteristics of the mixture of dry vegetation and soil. The reflectance spectra were obtained from laboratory spectroradiometer measurement (GER-2600) and from EO-1 Hyperion image data. The reflectance spectra of several samples having different level of dry vegetation fractions show similar pattern from both lab measurement and hyperspectral image. Red-edge near 700nm and shortwave IR near 2,200nm are more sensitive to the fraction of dry vegetation. The use of hyperspectral data would allow us for better separation between bare soils and other surfaces covered by dry vegetation during the leaf-off season.
Vegetation indices using the reflectance of selected wavelength, associating with the monitoring purpose such as identifying the progress of crop growth, on the vegetation canopy surface is widely used in the digital agriculture technology. However, the surface reflectance anisotropy can distort the true value of vegetation index related to the condition of surface, even though the surface property be unchanged. That causes difficulty to observe accurately crop growth on the monitoring system. In this study, a simple type goniometer was designed to measure the reflectance from the anisotropic surface according to various zeniths and azimuths of sun and viewing sensor in the field. On the tarp like as Lambertian surface, the reflectance of Blue, Green, Red, Near-Infrared band was similar to the tarps' reflectance properties. However, the reflectance was slightly overestimated in the cloudy day. The relative difference values of vegetation indices on grass were overestimated for the forward viewing and underestimated for the backward viewing. In addition, enhanced vegetation index (EVI) showed less sensitive according to the positions of sun and sensor viewing. Field observation with a goniometer will be helpful to understand the anisotropy characteristics on the vegetation surface.
Atmospheric correction is an essential part in time-series analysis on biophysical parameters of surface features. In this study, we tried to examine possible problems in atmospheric correction of multitemporal High Spatial Resolution (HSR) images obtained from two different sensor systems. Three KOMPSAT-2 and two IKONOS-2 multispectral images were used. Three atmospheric correction methods were applied to derive surface reflectance: (1) Radiative Transfer (RT) - based absolute atmospheric correction method, (2) the Dark Object Subtraction (DOS) method, and (3) the Cosine Of the Uun zeniTh angle (COST) method. Atmospheric correction results were evaluated by comparing spectral reflectance values extracted from invariant targets and vegetation cover types. In overall, multi-temporal reflectance from five images obtained from January to December did not show consistent pattern in invariant targets and did not follow a typical profile of vegetation growth in forests and rice field. The multi-temporal reflectance values were different by sensor type and atmospheric correction methods. The inconsistent atmospheric correction results from these multi-temporal HSR images may be explained by several factors including unstable radiometric calibration coefficients for each sensor and wide range of sun and sensor geometry with the off-nadir viewing HSR images.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.