• Title/Summary/Keyword: VEGETATION DENSITY

Search Result 416, Processing Time 0.021 seconds

Distributional Characteristics, Population Structures and Fruition Dynamics of Korean Endemic plant, Prunus choreiana H. T. Im (한국특산 복사앵도나무(Prunus choreiana H. T. Im)의 분포특성, 개체군구조 및 결실동태)

  • Kim, Young-Chul;Chae, Hyun-Hee;Son, Sung-Won
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.2
    • /
    • pp.177-201
    • /
    • 2022
  • Following the adoption of the global plant conservation strategies at the Conference of the Parties for Biodiversity Conservation, diligent actions to achieve each targets are actively carried out. In particular, the need for ecological conservation research to achieve targets 2 and 7 of GSPC-2020 has increased. The priority taxa to accomplish the objectives of GSPC-2020 are rare and endemic plants. In particular, endemic plants with limited distribution in specific regions are evaluated to face a high risk of extinction. To address the necessity to preserve endemic plants, we investigated the distribution of Prunus choreiana H. T. Im, a Korean endemic plant. After that, we examined the vegetational environment of the habitat of P. choreiana and evaluated its population structure. The productivity of its fruits and the effects of pollinators on fruit production were evaluated as well. The fruiting ratio was calculated based on the number of flowers produced. Lastly, we observed the annual growth characteristics of P. choreiana. The habitats of P. choreiana did not show a specific type of vegetation. All of them were located in a limestone area of Gangwon-do in the central Korean Peninsula and occupied a site where the coverage of the tree layer and the sub-tree layer was not high or did not exist. The population structure of P. choreiana contained a high proportion of mature plants capable of producing fruits and a low proportion of seedlings and Juvenile plants. We found that the production of fruits required pollinators and was affected by the performance of each plant. Although P. choreiana produces many flowers, only a maximum of 20% and only 2-6% on average bear fruits. These flowering characteristics may be due to pollinators' low abundance and activity during the flowering season (between mid-March and early April), suggesting that many flowers are needed to attract more pollinators. We rarely observed the re-establishment of seedlings in the population of P. choreiana. Despite that, we predict the population to persist owing to its long lifespan and periodic production of numerous fruits. However, if the tree layer and sub-tree layer in competing status with P. choreiana increase their crown density, they are expected to inhibit the growth of P. choreiana and affect the risk of its extinction. Therefore, the current changes in the vegetational environment of the habitats are expected to decrease the number and extent of P. choreiana in the long term. The results of this study may serve as primary and important data necessary for the achievement of GSPC-2020 objectives.

Vegetation Change of Abies koreana Habitats in the Subalpine Zone of Mt. Jirisan over Eight Years (지리산 아고산대 구상나무 자생지의 8년간 식생 변화)

  • Da-Eun Park;Jeong-Eun Lee;Go Eun Park;Hee-Moon Yang;Ho-Jin Kim;Chung-Weon Yun
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.2
    • /
    • pp.222-238
    • /
    • 2024
  • Coniferous species in subalpine ecosystems are known to be highly sensitive to climate change. Therefore, it is becoming increasingly important to monitor community and population dynamics. This study monitored 37 plots within the distribution area of Abies koreana on Mt. Jirisan for a period of eight years. We analyzed the importance value, density of living stems, mortality rate, recruitment rate, basal area, DBH (diameter of breast height) class distribution, and tree health status. Our results showed changes in the importance value based on the tree stratum, with A. koreana decreasing by 3.6% and Tripterygium regelii increasing by 2.5% in the tree layer. Between 2015 and 2023, there were 149 dead trees/ha (17.99% mortality rate) and 12 living trees/ha (1.02% recruitment rate) of A. koreana. The decrease in basal area was attributed to a decrease in the number of living trees. Tree mortality occurred in all DBH classes, with a particularly high decline in the <10 cm class (65 trees/ha reduced). In terms of changes in tree health status, the population of alive standing (AS) type trees, initially consisting of 539 trees/ha, has been transformed into alive standing (AS), alive lean (AL), and death standing (DS), accounting for 69.7%, 0.5%, and 13.8%, respectively. Meanwhile, DS-type trees have transitioned into dead broken (DB) and dead fallen (DF) types. This phenomenon is believed to be caused by strong winds in the subalpine region that pull up the rootlets from the soil. Further research on this finding is recommended.

Effects of Soil Hardness on the Root Distribution of Pinus rigida Mill. Planted in Association with Sodding Works on the Denuded Land (사방시공지(砂防施工地)에 있어서 리기다소나무의 수근(樹根)의 분포(分布)에 미치는 토양견밀도(土壤堅密度)의 영향(影響))

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.56 no.1
    • /
    • pp.66-76
    • /
    • 1982
  • Soil harness represents such physical properties as porosity, amount of water, bulk density and soil texture. It is very important to know the mechanical properties of soil as well as the chemical in order to research the fundamental phenomena in the growth and the distribution of tree roots. The writer intended to grip soil hardness by soil layer and also to grasp the root distribution and the correlation between soil hardness and the root distribution of Pinus riguda Mill. planted on the denuded hillside with sooding works by soil layer on soil profile. The site investigated is situated at Peongchang-ri 13, Kocksung county, Chon-nam Province. The area is consisted of 3.63 ha having on elevation of 167.5-207.5 m. Soil texture is sandy loam and parant rock in granite. Average slope of the area is $17^{\circ}-30^{\circ}$. Soil moisture condition is dry. Main exposure of the area is NW or SW. The total number of plots investigated was 24 plots. It divided into two groups by direction each 12 plots in NW and SW and divided into three groups by the position of mountain plots in foot of mountain, in hillside, and in summit of mountain, respectively. Each sampling tree was selected as specimen by purposive sampling and soil profile was made at the downward distance of 50cm form the sampling tree at each plot. Soil hardness, soil layer surveying, root distribution of the tree and vegetation were measured and investigated at the each plot. The soil hardness measured by the Yamanaka Soil Hardness Tester in mm unit. the results are as follows: 1) Soil hardness increases gradually in conformity with the increment of soil depth. The average soil indicator hardness by soil layer are as follows: 14.6mm in I - soil layer (0-10cm in depth from soil surface), 16.2mm in II - soil layer (10-20cm), 17.2 in III - soil layer (20-30cm), 18.3mm in IV - soil layer(30-40cm), 19.8mm in V - soil layer (4.50mm). 2) The tree roots (less than 20mm in diameter) distribute more in the surface layer than in the subsoil layer and decrease gradually according to the increment of soil depth. The ratio of the root distribution can be illustrated by comparing with each of five soil layers from surface to subsoil layer as follows: I - soil layer; 31%, II - soil layer; 26%, III - soil layer; 18%, IV - soil layer; 12%, V - soil layer; 13%, 3) Soil hardness and tree root distribution (less than 20mm in diameter) of Pinus rigida Mill. correlate negatively each other; the more soil hardness increases, the most root distribution decreases. The correlation coefficients between soil hardness and distribution of tree roots by soil layer are as follows: I - soil layer; -0.3675 (at the 10% significance level), II - soil layer; -0.5299 (at the 1% significance level), III - soil layer; -0.5573 (at the 2% significance level), IV - soil layer; -0.6922 (at the 5% significance level), V - soil layer; -0.7325 (at the 2% significance level). 4) the most suitable range of soil hardness for the growth of Pinus rigida Mill is the range of 12-14.9mm in soil indicator hardness. In this range of soil indicator hardness, the root distribution of this tree amounts to 41.8% in spite of 33% in soil harness and under the 20.9mm of soil indicator hardness, the distribution amounts to 93.2% in spite of 82% in soil hardness. Judging from above facts, the roots of Pinus rigida can easily grow within the soil condition of 20.9mm in soil indicator hardness. 5) The soil layers are classified by their depths from the surface soil.

  • PDF

The Morphology, Physical and Chemical Characteristics of the Red-Yellow Soils in Korea (우리나라 전토양(田土壤)의 특성(特性) (저구릉(低丘陵), 산록(山麓) 및 대지(臺地)에 분포(分布)된 적황색토(赤黃色土)를 중심(中心)으로))

  • Shin, Yong Hwa
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.1
    • /
    • pp.35-52
    • /
    • 1973
  • Red Yellow Soils occur very commonly in Korea and constitute the important upland soils of the country which are either presently being cultivated or are suitable for reclaiming and cultivating. These soils are distributed on rolling, moutain foot slopes, and terraces in the southern and western parts of the central districts of Korea, and are derived from granite, granite gneiss, old alluvium and locally from limestone and shale. This report is a summary of the morphology, physical and chemical characteristics of Red Yellow Soils. The data obtained from detailed soil surveys since 1964 are summarized as follows. 1. Red-Yellows Soils have an A, Bt, C profile. The A horizon is dark colored coarse loamy or fine loamy with the thin layer of organic matter. The B horizon is dominantly strong brown, reddish brown or yellowish red, clayey or fine loamy with clay cutans on the soil peds. The C horizon varies with parent materials, and is coarser texture and has a less developed structure than the Bt horizon. Soil depth, varied with relief and parent materials, is predominantly around 100cm. 2. In the physical characteristics, the clay content of surface soil is 18 to 35 percent, and of subsoil is 30 to 90 percent nearly two times higher than the surface soil. Bulk density is 1.2 to 1.3 in the surface soil and 1.3 to 1.5 in the subsoil. The range of 3-phase is mostly narrow with 45 to 50 percent in solid phase, 30 to 45 percent in liquid one, and 5 to 25 percent in gaseous state in the surface soil; and 50 to 60 solid, 35 to 45 percent liquid and less than 15 percent gaseous in the subsoil. Available soil moisture capacity ranges from 10 to 23 percent in the surface soil, and 5 to 16 percent in the subsoil. 3. Chemically, soil reaction is neutral to alkaline in soils derived from limestone or old fluviomarine deposits, and acid to strong acid in other ones. The organic matter content of surface soil varying considerably with vegetation, erosion and cultivation, ranges from 1.0 to 5.0 percent. The cation exchange capacity is 5 to 40 me/100gr soil and closely related to the content of organic matter, clay and silt. Base saturation is low, on the whole, due to the leaching of extractable cations, but is high in soils derived from limestone with high content of lime and magnesium. 4. Most of these soils mainly contain halloysite (a part of kaolin minerals), vermiculite (weathered mica), and illite, including small amount of chlorite, gibbsite, hematite, quartz and feldspar. 5. Characteristically they are similar to Red Yellow Podzolic Soils and a part of Reddish Brown Lateritic Soils of the United States, and Red Yellow Soils of Japan. According to USDA 7th Approximation, they can be classified as Udu Its or Udalfs, and in FAO classification system to Acrisols, Luvisols, and Nitosols.

  • PDF

Studies on a Plan for Afforestation at Tong-ri Beach Resort(II) -Analyses of Crown Amounts and Soil Properties in the Disaster-damage Prevention Forests of Pinus thunbergii PARL., the Valuation on Soil Properties for Planting and Planning for Afforestation- (통리(桶里) 해수욕장(海水浴場) 녹지대(綠地帶) 조성(造成)에 관(關)한 연구(硏究)(II) -곰솔 해안방재림(海岸防災林)의 수관량(樹冠量) 및 토양분석(土壤分析), 식재기반평가(植栽基盤評價) 및 녹지대계획(綠地帶計劃)-)

  • Cho, Hi Doo
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.3
    • /
    • pp.303-314
    • /
    • 1988
  • Tong-ri beach has not enough vegetation to be enjoyed by the sea bathers and to be satisfied with preventing the disaster-damages, but mixed forest near the beach can work its funtions and the old forest of Pirus thunbergii $P_{ARL}$. near the beach do a Little. Therefore it is very urgent to plant more trees near the beach for bathers and disaster-damage prevention. This study was carried out for planning an afforestation, with reporting upon the crown amounts and soil properties of disaster-damage prevention forests of P. thunbergii $P_{ARL}$. planted on the coast sand dunes in 1970 and 1976, and with reporting upon the valuation on soil properties of the lands near the beach in order to set the afforestation site. The results are as follows : 1. In disaster-damage prevention forests, crown surface area and crown volume became increasingly greater in proportion to the height. To D.B.H., crown volume also became increasingly greater in proportion, but crown surface area was directly proportional. 2. In comparison to sail characteristics of sand dune, those of the forests were in large quantity in OM, T-N and avail. $SiO_2$, and almost in the same in avail. $P_2O_5$, but in small quantity in exchangeable canons : K, Ca, Mg and Na. 3. EC, Cl and pH were in small value in the forest soils, but CEC was in large value in those soils. 4. Above facts showed that the forests fulfill their functions for preventing disaster-damages and improve their soil properties. 5. The forests have naturally been thinned up to 34% in 17 years and 39% in 11 years, and one can easily pass through the forest(planted in 1970), because of its sufficient clear-length(2.71m) and its space to pass. 6. A plan for afforestation was oracle nut after judging several sites by the evaluation on the soil properties and considering the best relaxation and the prevention of the various disaster-damages upon which were reported in the last issue. 7. Afforestation should be kept for maintaining its appropriate density for best relaxation and disaster-damage prevention.

  • PDF

A Study on the Growth Diagnosis and Management Prescription for Population of Retusa Fringe Trees in Pyeongji-ri, Jinan(Natural Monument No. 214) (진안 평지리 이팝나무군(천연기념물 제214호)의 생육진단 및 관리방안)

  • Rho, Jae-Hyun;Oh, Hyun-Kyung;Han, Sang-Yub;Choi, Yung-Hyun;Son, Hee-Kyung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.36 no.3
    • /
    • pp.115-127
    • /
    • 2018
  • This study was attempted to find out the value of cultural assets through the clear diagnosis and prescription of the dead and weakness factors of the Population of Retusa Fringe Trees in Pyeongji-ri, Jinan(Natural Monument No. 214), The results are as follows. First, Since the designation of 13 natural monuments in 1968, since 1973, many years have passed since then. In particular, despite the removal of some of the buried soil during the maintenance process, such as retreating from the fence of the primary school after 2010, Second, The first and third surviving tree of the designated trees also have many branches that are dead, the leaves are dull, and the amount of leaves is small. vitality of tree is 'extremely bad', and the first branch has already been faded by a large number of branches, and the amount of leaves is considerably low this year, so that only two flowers are bloomed. The second is also in a 'bad'state, with small leaves, low leaf density, and deformed water. The largest number 1 in the world is added to the concern that the s coverd oil is assumed to be paddy soils. Third, It is found that the composition ratio of silt is high because it is known as '[silty loam(SiL)]'. In addition, the pH of the northern soil at pH 1 was 6.6, which was significantly different from that of the other soil. In addition, the organic matter content was higher than the appropriate range, which is considered to reflect the result of continuous application for protection management. Fourth, It is considered that the root cause of failure and growth of Jinan pyeongji-ri Population of Retusa Fringe Trees group is chronic syndrome of serious menstrual deterioration due to covered soil. This can also be attributed to the newly planted succession and to some of the deaths. Fifthly, It is urgent to gradually remove the subsoil part, which is estimated to be the cause of the initial damage. Above all, it is almost impossible to remove the coverd soil after grasping the details of the soil, such as clayey soil, which is buried in the rootstock. After removal of the coverd soil, a pestle is installed to improve the respiration of the roots and the ground with Masato. And the dead 4th dead wood and the 5th and 6th dead wood are the best, and the lower layer vegetation is mown. The viable neck should be removed from the upper surface, and the bark defect should undergo surgery and induce the development of blindness by vestibule below the growth point. Sixth, The underground roots should be identified to prepare a method to improve the decompression of the root and the respiration of the soil. It is induced by the shortening of rotten roots by tracing the first half of the rootstock to induce the generation of new roots. Seventh, We try mulching to suppress weed occurrence, trampling pressure, and soil moisturizing effect. In addition, consideration should be given to the fertilization of the foliar fertilizer, the injection of the nutrients, and the soil management of the inorganic fertilizer for the continuous nutrition supply. Future monitoring and forecasting plans should be developed to check for changes continuously.