• Title/Summary/Keyword: VAE

Search Result 71, Processing Time 0.035 seconds

Study on Lifelog Anomaly Detection using VAE-based Machine Learning Model (VAE(Variational AutoEncoder) 기반 머신러닝 모델을 활용한 체중 라이프로그 이상탐지에 관한 연구)

  • Kim, Jiyong;Park, Minseo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.91-98
    • /
    • 2022
  • Lifelog data continuously collected through a wearable device may contain many outliers, so in order to improve data quality, it is necessary to find and remove outliers. In general, since the number of outliers is less than the number of normal data, a class imbalance problem occurs. To solve this imbalance problem, we propose a method that applies Variational AutoEncoder to outliers. After preprocessing the outlier data with proposed method, it is verified through a number of machine learning models(classification). As a result of verification using body weight data, it was confirmed that the performance was improved in all classification models. Based on the experimental results, when analyzing lifelog body weight data, we propose to apply the LightGBM model with the best performance after preprocessing the data using the outlier processing method proposed in this study.

Effect of Exercise Type and Intensity on Insulin Resistance and Cardiovascular Disease Risk Factors in Obese Middle Aged Women (운동 형태와 강도의 차이가 중년비만여성의 인슐린 저항성 및 심혈관질환 위험요인에 미치는 영향)

  • Lee, Dae-Hee;Oh, Du-Hwan;Zhang, Seok-Am;Lee, Jang-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.181-191
    • /
    • 2016
  • This study examined the effects of exercise intensity and type on insulin resistance, cardiovascular disease risk factors, and exercise time. Obese thirty-two subjects (>body fat 30%) were randomly assigned one of four experimental groups: VO2 max 50% aerobic exercise group (MAE, n=8), VO2 max 80% aerobic exercise group (VAE, n=8), VO2 max 50% + resistance exercise group (MARE, n=8), and VO2 max 80% + resistance exercise group (VARE, n=8). Body fat significantly decreased in all groups and insulin resistance decreased significantly in MARE and VARE (p<.05 & p<.01) after exercise. CRP and IL-6 were slightly reduced after exercise, although these did not reach statistical significance, whereas the IL-6 level of the VAE group decreased significantly (p<.05). TNF-${\alpha}$ significantly decreased in the MAE group (p<.05) but significantly increased in the VARE group after exercise (p<.05). For exercise time, higher intensity exercise groups were significantly less than the lower intensity exercise groups (p<.001). These results suggest that body fat is affected by all kinds of exercise intensity and type while CRP is not. Insulin resistance and TNF-${\alpha}$ were affected by exercise type, whereas IL-6, TNF-${\alpha}$, and exercise time were affected by exercise intensity.

Variational Auto-Encoder Based Semi-supervised Learning Scheme for Learner Classification in Intelligent Tutoring System (지능형 교육 시스템의 학습자 분류를 위한 Variational Auto-Encoder 기반 준지도학습 기법)

  • Jung, Seungwon;Son, Minjae;Hwang, Eenjun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.11
    • /
    • pp.1251-1258
    • /
    • 2019
  • Intelligent tutoring system enables users to effectively learn by utilizing various artificial intelligence techniques. For instance, it can recommend a proper curriculum or learning method to individual users based on their learning history. To do this effectively, user's characteristics need to be analyzed and classified based on various aspects such as interest, learning ability, and personality. Even though data labeled by the characteristics are required for more accurate classification, it is not easy to acquire enough amount of labeled data due to the labeling cost. On the other hand, unlabeled data should not need labeling process to make a large number of unlabeled data be collected and utilized. In this paper, we propose a semi-supervised learning method based on feedback variational auto-encoder(FVAE), which uses both labeled data and unlabeled data. FVAE is a variation of variational auto-encoder(VAE), where a multi-layer perceptron is added for giving feedback. Using unlabeled data, we train FVAE and fetch the encoder of FVAE. And then, we extract features from labeled data by using the encoder and train classifiers with the extracted features. In the experiments, we proved that FVAE-based semi-supervised learning was superior to VAE-based method in terms with accuracy and F1 score.

Study on the Graft Effect in Emulsion Polymerization of Poly(vinyl acetate-co-ethylene) Using Poly(vinyl alcohol) as Emulsifier (Poly(vinyl alcohol)를 이용한 Poly(vinyl acetate-co-ethylene) 에멀젼 중합에서 그라프트 연구)

  • Choi, Yong-Hae
    • Journal of Adhesion and Interface
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • An automated reaction calorimeter was used to directly monitor the rate of emulsion polymerization of vinyl acetate using poly(vinyl alcohol) (PVAs) having different degrees of blockiness. By using this technique in conjunction with other off-line measurements of the evolution of particle size distributions, important details of the process were observed. No constant graft rate period was observed for both low and high initial monomer-water ratios. The gel effect was observed for the low monomer-water ratio recipe. The particle size distributions were broad (particle diameter 40~100 nm) and bimodal. Continuous nucleation was observed to be accompanied by 'limited aggregation' and flocculation during the particle growth stages. It was speculated to be due to the occurrence of the extensive 'limited aggregation' and chain transfer to PVA leading to grafting.

Development of Nuclear Power Plant Instrumentation Signal Faults Identification Algorithm (원전 계측 신호 오류 식별 알고리즘 개발)

  • Kim, SeungGeun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.6
    • /
    • pp.1-13
    • /
    • 2020
  • In this paper, the author proposed a nuclear power plant (NPP) instrumentation signal faults identification algorithm. A variational autoencoder (VAE)-based model is trained by using only normal dataset as same as existing anomaly detection method, and trained model predicts which signal within the entire signal set is anomalous. Classification of anomalous signals is performed based on the reconstruction error for each kind of signal and partial derivatives of reconstruction error with respect to the specific part of an input. Simulation was conducted to acquire the data for the experiments. Through the experiments, it was identified that the proposed signal fault identification method can specify the anomalous signals within acceptable range of error.

A Model for Machine Fault Diagnosis based on Mutual Exclusion Theory and Out-of-Distribution Detection

  • Cui, Peng;Luo, Xuan;Liu, Jing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.9
    • /
    • pp.2927-2941
    • /
    • 2022
  • The primary task of machine fault diagnosis is to judge whether the current state is normal or damaged, so it is a typical binary classification problem with mutual exclusion. Mutually exclusive events and out-of-domain detection have one thing in common: there are two types of data and no intersection. We proposed a fusion model method to improve the accuracy of machine fault diagnosis, which is based on the mutual exclusivity of events and the commonality of out-of-distribution detection, and finally generalized to all binary classification problems. It is reported that the performance of a convolutional neural network (CNN) will decrease as the recognition type increases, so the variational auto-encoder (VAE) is used as the primary model. Two VAE models are used to train the machine's normal and fault sound data. Two reconstruction probabilities will be obtained during the test. The smaller value is transformed into a correction value of another value according to the mutually exclusive characteristics. Finally, the classification result is obtained according to the fusion algorithm. Filtering normal data features from fault data features is proposed, which shields the interference and makes the fault features more prominent. We confirm that good performance improvements have been achieved in the machine fault detection data set, and the results are better than most mainstream models.

3D Object Generation and Renderer System based on VAE ResNet-GAN

  • Min-Su Yu;Tae-Won Jung;GyoungHyun Kim;Soonchul Kwon;Kye-Dong Jung
    • International journal of advanced smart convergence
    • /
    • v.12 no.4
    • /
    • pp.142-146
    • /
    • 2023
  • We present a method for generating 3D structures and rendering objects by combining VAE (Variational Autoencoder) and GAN (Generative Adversarial Network). This approach focuses on generating and rendering 3D models with improved quality using residual learning as the learning method for the encoder. We deep stack the encoder layers to accurately reflect the features of the image and apply residual blocks to solve the problems of deep layers to improve the encoder performance. This solves the problems of gradient vanishing and exploding, which are problems when constructing a deep neural network, and creates a 3D model of improved quality. To accurately extract image features, we construct deep layers of the encoder model and apply the residual function to learning to model with more detailed information. The generated model has more detailed voxels for more accurate representation, is rendered by adding materials and lighting, and is finally converted into a mesh model. 3D models have excellent visual quality and accuracy, making them useful in various fields such as virtual reality, game development, and metaverse.

Comparative Analysis of VT-ADL Model Performance Based on Variations in the Loss Function (Loss Function 변화에 따른 VT-ADL 모델 성능 비교 분석)

  • Namjung Kim;Changjoon Park;Junhwi Park;Jaehyun Lee;Jeonghwan Gwak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.41-43
    • /
    • 2024
  • 본 연구에서는 Vision Transformer 기반의 Anomaly Detection and Localization (VT-ADL) 모델에 초점을 맞추고, 손실 함수의 변경이 MVTec 데이터셋에 대한 이상 검출 및 지역화 성능에 미치는 영향을 비교 분석한다. 기존의 손실 함수를 KL Divergence와 Log-Likelihood Loss의 조합인 VAE Loss로 대체하여, 성능 변화를 심층적으로 조사했다. 실험을 통해 VAE Loss로의 전환은 VT-ADL 모델의 이상 검출 능력을 현저히 향상시키며, 특히 PRO-score에서 기존 대비 약 5%의 개선을 보였다는 점을 확인하였다. 이러한 결과는 손실 함수의 최적화가 VT-ADL 모델의 전반적인 성능에 중요한 영향을 미칠 수 있음을 시사한다. 또한, 이 연구는 Vision Transformer 기반 모델의 이상 검출과 지역화 작업에 있어서 손실 함수 선택의 중요성을 강조하며, 향후 관련 연구에 유용한 기준을 제공할 수 있을 것으로 기대된다.

  • PDF

Visualization of Korean Speech Based on the Distance of Acoustic Features (음성특징의 거리에 기반한 한국어 발음의 시각화)

  • Pok, Gou-Chol
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.3
    • /
    • pp.197-205
    • /
    • 2020
  • Korean language has the characteristics that the pronunciation of phoneme units such as vowels and consonants are fixed and the pronunciation associated with a notation does not change, so that foreign learners can approach rather easily Korean language. However, when one pronounces words, phrases, or sentences, the pronunciation changes in a manner of a wide variation and complexity at the boundaries of syllables, and the association of notation and pronunciation does not hold any more. Consequently, it is very difficult for foreign learners to study Korean standard pronunciations. Despite these difficulties, it is believed that systematic analysis of pronunciation errors for Korean words is possible according to the advantageous observations that the relationship between Korean notations and pronunciations can be described as a set of firm rules without exceptions unlike other languages including English. In this paper, we propose a visualization framework which shows the differences between standard pronunciations and erratic ones as quantitative measures on the computer screen. Previous researches only show color representation and 3D graphics of speech properties, or an animated view of changing shapes of lips and mouth cavity. Moreover, the features used in the analysis are only point data such as the average of a speech range. In this study, we propose a method which can directly use the time-series data instead of using summary or distorted data. This was realized by using the deep learning-based technique which combines Self-organizing map, variational autoencoder model, and Markov model, and we achieved a superior performance enhancement compared to the method using the point-based data.