Acknowledgement
This work was supported by the Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2014-3-00077).
References
- P. Bergmann, M. Fauser, D. Sattlegger and C. Steger, "MVTec AD - A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection," 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9584-9592, 2021, doi: 10.1109/CVPR.2019.00982.
- P. Mishra, R. Verk, D. Fornasier, C. Piciarelli and G. L. Foresti, "VT-ADL: A Vision Transformer Network for Image Anomaly Detection and Localization," 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE), pp. 01-06, 2021, doi: 10.1109/ISIE45552.2021.9576231.
- A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez, L. Kaizer and I. Polosukhin, "Attention is All You Need," Advances in Neural Information Processing Systems 30, Vol. 1, pp. 5999-6009, Dec. 2017.
- A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszhoreit and N. Houlsby," An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale," In International Conference on Learning Representations, 2021.
- J. Terven, D. M. Cordova-Esparza, A. Ramizez-Pedraza and E. A. Chavez-Urbiola, "Loss functions and metrics in deep learning. A review." arXiv preprint arXiv:2307.02694, 2023.