• 제목/요약/키워드: V-model

검색결과 3,810건 처리시간 0.035초

Protein molecular structure, degradation and availability of canola, rapeseed and soybean meals in dairy cattle diets

  • Tian, Yujia;Zhang, Xuewei;Huang, Rongcai;Yu, Peiqiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권9호
    • /
    • pp.1381-1388
    • /
    • 2019
  • Objective: The aims of this study were to reveal the magnitude of the differences in protein structures at a cellular level as well as protein utilization and availability among soybean meal (SBM), canola meal (CM), and rapeseed meal (RSM) as feedstocks in China. Methods: Experiments were designed to compare the three different types of feedstocks in terms of: i) protein chemical profiles; ii) protein fractions partitioned according to Cornell Net Carbohydrate and Protein System; iii) protein molecular structures and protein second structures; iv) special protein compounds-amino acid (AA); v) total digestible protein and energy values; vi) in situ rumen protein degradability and intestinal digestibility. The protein second structures were measured using FT/IR molecular spectroscopy technique. A summary chemical approach in National Research Council (NRC) model was applied to analyze truly digestible protein. Results: The results showed significant differences in both protein nutritional profiles and protein structure parameters in terms of ${\alpha}-helix$, ${\beta}-sheet$ spectral intensity and their ratio, and amide I, amide II spectral intensity and their ratio among SBM, CM, and RSM. SBM had higher crude protein (CP) and AA content than CM and RSM. For dry matter (DM), SBM, and CM had a higher DM content compared with RSM (p<0.05), whereas no statistical significance was found between SBM and CM (p = 0.28). Effective degradability of CP and DM did not demonstrate significant differences among the three groups (p>0.05). Intestinal digestibility of rumen undegradable protein measured by three-step in vitro method showed that there was significant difference (p = 0.05) among SBM, CM, and RSM, which SBM was the highest and RSM was the lowest with CM in between. NRC modeling results showed that digestible CP content in SBM was significantly higher than that of CM and RSM (p<0.05). Conclusion: This study suggested that SBM and CM contained similar protein value and availability for dairy cattle, while RSM had the lowest protein quality and utilization.

Wind load and wind-induced effect of the large wind turbine tower-blade system considering blade yaw and interference

  • Ke, S.T.;Wang, X.H.;Ge, Y.J.
    • Wind and Structures
    • /
    • 제28권2호
    • /
    • pp.71-87
    • /
    • 2019
  • The yaw and interference effects of blades affect aerodynamic performance of large wind turbine system significantly, thus influencing wind-induced response and stability performance of the tower-blade system. In this study, the 5MW wind turbine which was developed by Nanjing University of Aeronautics and Astronautics (NUAA) was chosen as the research object. Large eddy simulation on flow field and aerodynamics of its wind turbine system with different yaw angles($0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$ and $45^{\circ}$) under the most unfavorable blade position was carried out. Results were compared with codes and measurement results at home and abroad, which verified validity of large eddy simulation. On this basis, effects of yaw angle on average wind pressure, fluctuating wind pressure, lift coefficient, resistance coefficient,streaming and wake characteristics on different interference zone of tower of wind turbine were analyzed. Next, the blade-cabin-tower-foundation integrated coupling model of the large wind turbine was constructed based on finite element method. Dynamic characteristics, wind-induced response and stability performance of the wind turbine structural system under different yaw angle were analyzed systematically. Research results demonstrate that with the increase of yaw angle, the maximum negative pressure and extreme negative pressure of the significant interference zone of the tower present a V-shaped variation trend, whereas the layer resistance coefficient increases gradually. By contrast, the maximum negative pressure, extreme negative pressure and layer resistance coefficient of the non-interference zone remain basically same. Effects of streaming and wake weaken gradually. When the yaw angle increases to $45^{\circ}$, aerodynamic force of the tower is close with that when there's no blade yaw and interference. As the height of significant interference zone increases, layer resistance coefficient decreases firstly and then increases under different yaw angles. Maximum means and mean square error (MSE) of radial displacement under different yaw angles all occur at circumferential $0^{\circ}$ and $180^{\circ}$ of the tower. The maximum bending moment at tower bottom is at circumferential $20^{\circ}$. When the yaw angle is $0^{\circ}$, the maximum downwind displacement responses of different blades are higher than 2.7 m. With the increase of yaw angle, MSEs of radial displacement at tower top, downwind displacement of blades, internal force at blade roots all decrease gradually, while the critical wind speed decreases firstly and then increases and finally decreases. The comprehensive analysis shows that the worst aerodynamic performance and wind-induced response of the wind turbine system are achieved when the yaw angle is $0^{\circ}$, whereas the worst stability performance and ultimate bearing capacity are achieved when the yaw angle is $45^{\circ}$.

Gestational Exposure to Pesticides Induces Oxidative Stress and Lipid Peroxidation in Offspring that Persist at Adult Age in an Animal Model

  • Ndonwi, Elvis Ngwa;Atogho-Tiedeu, Barbara;Lontchi-Yimagou, Eric;Shinkafi, Tijjani S.;Nanfa, Dieudonne;Balti, Eric V.;Indusmita, Routray;Mahmood, Amena;Katte, Jean-Claude;Mbanya, Armand;Matsha, Tandi;Mbanya, Jean Claude;Shakir, Ali;Sobngwi, Eugene
    • Toxicological Research
    • /
    • 제35권3호
    • /
    • pp.241-248
    • /
    • 2019
  • Pesticide exposure may induce biochemical alterations including oxidative stress and lipid peroxidation. However, in the context of developmental origin of health and disease, putative trans-generational effect of exposure to pesticides are insufficiently studied. We therefore aimed to evaluate the biochemical effect of gestational exposure to four pesticides on female Wistar rats and their offspring at adult age. We studied 30 female nulliparous Wistar rats divided into 5 equal groups. Group 1 served as the control group and received distilled water while group 2, 3, 4 and 5 received orally pesticide 1 (imidacloprid), pesticide 2 (chlorpyrifos), pesticide 3 (imidacloprid + lambda cyhalothrin) and pesticide 4 (oxamyl) respectively once daily throughout gestation at a dose equivalent to 1/10 lethal dose 50. The mothers were followed up until one month post gestation. The offspring were followed up from birth until adult age (12 weeks). In all animals at each time point we evaluated malondialdehyde (MDA), oxidative stress and liver function enzymes. There was similar variation of total body weight in all the groups during and after gestation. However, Female Wistar rats of the exposed groups had significant alterations in liver SOD (-30.8% to +64.1%), catalase (-38.8% to -85.7%) and GSH (-29.2% to -86.5%) and; kidney catalase (> 100%), GSH (> 100%). Moreover, MDA, alanine transaminase (ALT) and aspartate transaminase (AST) levels were significantly higher in pesticide exposed rats compared to the control group. Similar alterations in antioxidant enzymes, MDA and liver function enzymes were observed in offspring of treated rats evidenced at weaning and persisting until adult age. Exposure to pesticides causes oxidative stress and lipid peroxidation in exposed female Wistar rats and their offspring. The persistence in offspring at adult age suggests transgenerational adverse effects.

대규모 해양재난의 국가적 대응전략에 관한 연구 (A Study on National Response Strategies of Large-scale Marine Disaster)

  • 이춘재
    • 해양환경안전학회지
    • /
    • 제25권5호
    • /
    • pp.550-559
    • /
    • 2019
  • 2014년 4월 발생한 세월호 침몰사고는 단순한 해양사고를 넘어 해양재난으로, 나아가 국민의 정서와 사회의 건전성까지 황폐화시킨 사회적 참사로 확대되었다. 따라서, 국가 운영에 치명적 영향을 미칠 수도 있는 대규모 선박사고나 해양오염사고, 그리고 자연재해 등 각종 해양재난에 대해 국가적 차원에서 철저한 대비 대응이 필요하다. 본 연구에서는 대규모 해양재난으로 인해 발생할 수 있는 국가 경제적 사회적 피해를 최소화하기 위해 국가적 위기를 불확실성에 근거하여 해석한 '검은 백조 이론'을 중심으로 대규모 해양재난에 대한 국가적 대응전략을 검토한다. 먼저, 사고예방을 위한 각 방어장벽별 결함을 최소화 시키는 노력과 함께 특정 방어장벽에 결함이 발생하더라도 그 결함이 위기사태로 연결되지 않도록 '해양재난의 검은 백조 탐지시스템'을 구축하는 한편, 해양재난을 관리하는 주관기관을 일원화하여 해양안전관리 전 분야를 체계적으로 관리하고, 국가적 해양재난대응 현장지휘 및 협업체계를 구축하여 사고현장에 투입된 모든 대응세력들이 현장지휘관의 지휘통제에 따라 단일조직의 구성요소처럼 일사불란하게 움직여 사고수습에 효과적으로 대응할 수 있도록 한다.

KBIMS 건축 및 구조 부재 라이브러리 및 IFC 속성명 변환 방법 개발 (Development of KBIMS Architectural and Structural Element Library and IFC Property Name Conversion Methodology)

  • 김선우;김선중;김홍현;배기우
    • 한국건축시공학회지
    • /
    • 제20권6호
    • /
    • pp.505-514
    • /
    • 2020
  • 본 연구는 KBIMS가 적용된 건축 및 구조 부재 형상과 속성 데이터가 포함된 BIM 라이브러리를 구축하는 방법과, 속성 데이터 변환 과정의 문제를 해결하여 KBIMS IFC 파일로 변환하는 방법을 제시한다. 프로젝트에서 다양한 BIM 도구가 활용되어짐에도 불구하고 라이브러리 연구에 특정 도구가 주로 활용되었는데 본 연구에서는 클라우드 기반 데이터베이스 통합플랫폼에 포함된 카티아V6를 활용하여 주요 12개 카테고리, 총 793개의 건축 및 부재 형상 및 수치 라이브러리를 개발했다. KBIMS IFC 속성 입력 과정에서 데이터 타입과 특수문자 속성명으로 인한 데이터베이스 입력 제한을 파악하였다. 입력 가능한 데이터 타입을 찾아 입력하고, 아스키코드를 활용한 특수문자 속성명 대체 입력 방법을 개발했다. 변환기 프로토타입을 개발하여 추출된 IFC 파일을 KBIMS 원래 속성명이 포함된 IFC 파일로 변환하고 시범모델을 활용하여 검증하였다. 본 연구 결과는 실제 프로젝트에서 KBIMS 적용시 BIM 도구의 선택의 폭을 넓히고, 프로젝트 데이터 호환 문제를 줄이는데 도움을 줄 것이다. 마지막으로 KBIMS 라이브러리의 지속적인 활용을 위해서는 관련 조직 간의 유지 관리 방안에 대한 논의가 필요하다.

에너지전환 정책하에 전기차 수요자원의 경제적 가치 분석: 9차 전력수급계획 중심으로 (The Economics Value of Electric Vehicle Demand Resource under the Energy Transition Plan)

  • 전우영;조상민;조일현
    • 자원ㆍ환경경제연구
    • /
    • 제30권2호
    • /
    • pp.237-268
    • /
    • 2021
  • 에너지전환 정책의 가속화로 변동성 재생에너지가 가파르게 증가하면서 계통수용비용이 빠르게 상승하고 있다. 변동성 재생에너지 증가는 기존 전통적 발전자원의 이용률을 하락시켜서 전력공급에 비효율성을 가중시키는데 이에 대한 해결책으로 수요자원이 주목받고 있다. 본 연구에서는 수요자원 중 큰 잠재력을 가지고 있는 전기차 수요가 재생발전에 대한 유연성 자원으로 활용될 경우 전력공급비용을 얼마나 경감시킬 수 있는지 9차 전력수급계획을 반영하여 분석하였다. 분석모형으로 재생발전의 확률적 특성을 사실적으로 반영할 수 있는 확률적 전력시스템 최적화 모형을 적용해서 재생에너지가 유발하는 비용과 전기차 수요자원의 편익을 분석하였다. 분석결과 계시별 요금제보다 가상발전소 기반의 직접제어방식이 편익이 더 높고, 발전구성에서 재생에너지의 비중이 높아질수록 편익이 더 높아지는 것으로 나타났다. 전기차 수요자원의 구현비용인 중개사업자 수수료와 배터리마모비용을 고려한 순편익 추정결과, 충방전이 가능한 가상발전소 방식의 경우 월평균 운행비용의 67~85% 수준으로 나타났다. 이러한 수요자원 순편익이 소비자에게 효과적으로 분배되는 요금체계가 적용될 경우 시장참여유인이 높을 것으로 추정된다.

Ginsenoside Rg3 in combination with artesunate overcomes sorafenib resistance in hepatoma cell and mouse models

  • Chen, Ying-Jie;Wu, Jia-Ying;Deng, Yu-Yi;Wu, Ying;Wang, Xiao-Qi;Li, Amy Sze-man;Wong, Lut Yi;Fu, Xiu-Qiong;Yu, Zhi-Ling;Liang, Chun
    • Journal of Ginseng Research
    • /
    • 제46권3호
    • /
    • pp.418-425
    • /
    • 2022
  • Background: Sorafenib is effective in treating hepatoma, but most patients develop resistance to it. STAT3 signaling has been implicated in sorafenib resistance. Artesunate (ART) and 20(R)-ginsenoside Rg3 (Rg3) have anti-hepatoma effects and can inhibit STAT3 signaling in cancer cells. This study aimed to evaluate the effects of Rg3 in combination with ART (Rg3-plus-ART) in overcoming sorafenib resistance, and to examine the involvement of STAT3 signaling in these effects. Methods: Sorafenib-resistant HepG2 cells (HepG2-SR) were used to evaluate the in vitro anti-hepatoma effects of Rg3-plus-ART. A HepG2-SR hepatoma-bearing BALB/c-nu/nu mouse model was used to assess the in vivo anti-hepatoma effects of Rg3-plus-ART. CCK-8 assays and Annexin V-FITC/PI double staining were used to examine cell proliferation and apoptosis, respectively. Immunoblotting was employed to examine protein levels. ROS generation was examined by measuring DCF-DA fluorescence. Results: Rg3-plus-ART synergistically reduced viability of, and evoked apoptosis in HepG2-SR cells, and suppressed HepG2-SR tumor growth in mice. Mechanistic studies revealed that Rg3-plus-ART inhibited activation/phosphorylation of Src and STAT3 in HepG2-SR cultures and tumors. The combination also decreased the STAT3 nuclear level and induced ROS production in HepG2-SR cultures. Furthermore, overactivation of STAT3 or removal of ROS diminished the anti-proliferative effects of Rg3-plus-ART, and removal of ROS diminished Rg3-plus-ART's inhibitory effects on STAT3 activation in HepG2-SR cells. Conclusions: Rg3-plus-ART overcomes sorafenib resistance in experimental models, and inhibition of Src/STAT3 signaling and modulation of ROS/STAT3 signaling contribute to the underlying mechanisms. This study provides a pharmacological basis for developing Rg3-plus-ART into a novel modality for treating sorafenib-resistant hepatoma.

비전센서 및 딥러닝을 이용한 항만구조물 방충설비 세분화 시스템 개발 (Development of Fender Segmentation System for Port Structures using Vision Sensor and Deep Learning)

  • 민지영;유병준;김종혁;전해민
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권2호
    • /
    • pp.28-36
    • /
    • 2022
  • 매립지 위에 건설되는 항만시설물은 바람(태풍), 파랑, 선박과의 충돌 등 극한 외부 하중에 노출되기 때문에 구조물의 안전성 및 사용성을 주기적으로 평가하는 것이 중요하다. 본 논문에서는 항만 계류시설에 설치된 방충설비의 유지관리를 위하여 비전 및 딥러닝 기반의 방충설비 세분화(segmentation) 시스템을 개발하였다. 방충설비 세분화를 위하여 인코더-디코더 형식과 인간 시각체계의 편심 기능에서 영감을 얻은 수용 영역 블록(Receptive field block) 기반의 합성곱 모듈을 DenseNet 형식으로 개선하는 딥러닝 네트워크를 제안하였다. 네트워크 훈련을 위해 BP형, V형, 원통형, 타이어형 등 다양한 형태의 방충설비 영상을 수집하였으며, 탄성 변형, 좌우 반전, 색상 변환 및 기하학적 변환을 통해 영상을 증강시킨 다음 제안한 딥러닝 네트워크를 학습하였다. 기존의 세분화 모델인 VGG16-Unet과 비교하여 제안한 모델의 세분화 성능을 검증하였으며, 그 결과 본 시스템이 IoU 84%, 조화평균 90% 이상으로 정밀하게 실시간으로 세분화할 수 있음을 확인하였다. 제안한 방충설비 세분화 시스템의 현장적용 가능성을 검증하기 위하여 국내 항만 시설물에서 촬영된 영상을 기반으로 학습을 수행하였으며, 그 결과 기존 세분화 모델과 비교하였을 때 우수한 성능을 보이며 정밀하게 방충설비를 감지하는 것을 확인하였다.

The Use of Information and Communication Technologies in Education of Students' Civic Responsibility

  • Sadovyi, Mykola;Terenko, Olena;Filimonova, Tetiana;Malanchuk, Serhii;Vovkochyn, Lyudmyla;Paslawska, Alla;Oros, Ildiko
    • International Journal of Computer Science & Network Security
    • /
    • 제22권7호
    • /
    • pp.213-219
    • /
    • 2022
  • Building Ukraine as an independent, sovereign state requires the education of a citizen-patriot, able to live and work in a democracy, ensure the unity of Ukraine, feel constant responsibility for themselves, their people, country, seek to make a real contribution to the reform process. Modern modernization of the education system requires the search for new information and communication technologies that can ensure the formation of a citizen with an active civic position, which involves not only students mastering the rights and responsibilities of citizens, convincing them of the feasibility of democratic transformation of society, patriotic qualities and feelings, but also the identification of motivated civic actions. The pandemic and hostilities have led to significant changes in the field of education around the world, they have caused educational problems in Ukraine. At the beginning of the quarantine in the spring of 2020, all educational institutions in the emergency mode switched to distance learning. Intensive use of information and communication technologies in the life of modern society has led to a rethinking of the content of education and training of future professionals: the main role is played not so much by the information itself as the ability to work with it, critically comprehend and produce new knowledge; the main thing is not the amount of information, but its quality; information is needed for further practical application and transformation into knowledge, and the ability to work with information becomes one of the important competencies of the modern specialist in the new transformation of society: from information to the knowledge society. In this context, one of the main forms of training is distance learning, which is able to respond to the challenges of society. The main methodological positions that are taken into account in the construction of the structure and dynamics of the formation of civic responsibility of the individual during the use of information and communication technologies are highlighted. The structure of civil responsibility as a holistic system of information and communication technologies is outlined, which includes three subsystems that characterize the natural, social and systemic qualities of citizenship, interconnected hierarchically and synergistically.The constituent elements of the structural part of the model of civic culture of the individual are analyzed.

Dynamic of heat production partitioning in rooster by indirect calorimetry

  • Rony Lizana, Riveros;Rosiane, de Sousa Camargos;Marcos, Macari;Matheus, de Paula Reis;Bruno Balbino, Leme;Nilva Kazue, Sakomura
    • Animal Bioscience
    • /
    • 제36권1호
    • /
    • pp.75-83
    • /
    • 2023
  • Objective: The objective of this study was to describe a methodological procedure to quantify the heat production (HP) partitioning in basal metabolism or fasting heat production (FHP), heat production due to physical activity (HPA), and the thermic effect of feeding (TEF) in roosters. Methods: Eighteen 54-wk-old Hy Line Brown roosters (2.916±0.15 kg) were allocated in an open-circuit chamber of respirometry for O2 consumption (VO2), CO2 production (VCO2), and physical activity (PA) measurements, under environmental comfort conditions, following the protocol: adaptation (3 d), ad libitum feeding (1 d), and fasting conditions (1 d). The Brouwer equation was used to calculate the HP from VO2 and VCO2. The plateau-FHP (parameter L) was estimated through the broken line model: HP = U×(R-t)×I+L; I = 1 if t<R or I = 0 if t>R; Where the broken-point (R) was assigned as the time (t) that defined the difference between a short and long fasting period, I is conditional, and U is the decreasing rate after the feed was withdrawn. The HP components description was characterized by three events: ad libitum feeding and short and long fasting periods. Linear regression was adjusted between physical activity (PA) and HP to determine the HPA and to estimate the standardized FHP (st-FHP) as the intercept of PA = 0. Results: The time when plateau-FHP was reached at 11.7 h after withdrawal feed, with a mean value of 386 kJ/kg0.75/d, differing in 32 kJ from st-FHP (354 kJ/kg0.75/d). The slope of HP per unit of PA was 4.52 kJ/mV. The total HP in roosters partitioned into the st-FHP, termal effect of feeding (TEF), and HPA was 56.6%, 25.7%, and 17.7%, respectively. Conclusion: The FHP represents the largest fraction of energy expenditure in roosters, followed by the TEF. Furthermore, the PA increased the variation of HP measurements.