Woo, Sang Hee;Kim, Jong Bum;Jang, Hong Ryang;Kwon, Soon Bark;Yook, Se-Jin;Bae, Gwi-Nam
Journal of the Korean Society for Railway
/
v.20
no.4
/
pp.433-439
/
2017
Urban railway tunnels are polluted by resuspension of deposited bottom dust or newly generated wear dust. A hybrid type dust collector consisting of a baffle and an electrostatic precipitator was developed to remove these types of airborne dust when trains are running in the tunnel. Since dust collection efficiency of the hybrid dust collector is inversely proportional to the airflow rate, the relationship between airflow rate and dust collection efficiency was experimentally investigated for two baffle models. Collection efficiencies for dust larger than $0.5{\mu}m$ for the hybrid dust collector model A1, operated at 3.4 m/s, were greater than 30%; those for the hybrid dust collector model A2, operated at 4.7 m/s, were higher than 20%. When the applied voltage was 13 kV, the amounts of $PM_{10}$ collected with model A1 and model A2 dust collectors were estimated at $253{\mu}g$ and $242{\mu}g$ per hour, respectively.
To generate a deep learning model with high performance, a large training dataset should be required. However, it requires a lot of time and cost to generate a large training dataset in remote sensing. Therefore, the importance of transfer learning of deep learning model using a small dataset have been increased. In this paper, we performed transfer learning of trained model based on open datasets by using orthoimages and digital maps to detect changes of building objects in multitemporal orthoimages. For this, an initial training was performed on open dataset for change detection through the HRNet-v2 model, and transfer learning was performed on dataset by orthoimages and digital maps. To analyze the effect of transfer learning, change detection results of various deep learning models including deep learning model by transfer learning were evaluated at two test sites. In the experiments, results by transfer learning represented best accuracy, compared to those by other deep learning models. Therefore, it was confirmed that the problem of insufficient training dataset could be solved by using transfer learning, and the change detection algorithm could be effectively applied to various remote sensed imagery.
In recent years, Convolutional Neural Networks (CNNs) have achieved outstanding performance in the fields of computer vision such as image classification, object detection, visual quality enhancement, etc. However, as huge amount of computation and memory are required in CNN models, there is a limitation in the application of CNN to low-power environments such as mobile or IoT devices. Therefore, the need for neural network compression to reduce the model size while keeping the task performance as much as possible has been emerging. In this paper, we propose a method to compress CNN models by combining matrix decomposition methods of LR (Low-Rank) approximation and CP (Canonical Polyadic) decomposition. Unlike conventional methods that apply one matrix decomposition method to CNN models, we selectively apply two decomposition methods depending on the layer types of CNN to enhance the compression performance. To evaluate the performance of the proposed method, we use the models for image classification such as VGG-16, RestNet50 and MobileNetV2 models. The experimental results show that the proposed method gives improved classification performance at the same range of 1.5 to 12.1 times compression ratio than the existing method that applies only the LR approximation.
Miso Park;Heung-Min Kim;Youngmin Kim;Suho Bak;Tak-Young Kim;Seon Woong Jang
Korean Journal of Remote Sensing
/
v.40
no.1
/
pp.33-43
/
2024
This research assessed the applicability of the You Only Look Once (YOLO)v8 and DeepLabv3+ models for the effective detection of compost heaps, identified as a significant source of non-point source pollution. Utilizing high-resolution imagery acquired through Unmanned Aerial Vehicles(UAVs), the study conducted a comprehensive comparison and analysis of the quantitative and qualitative performances. In the quantitative evaluation, the YOLOv8 model demonstrated superior performance across various metrics, particularly in its ability to accurately distinguish the presence or absence of covers on compost heaps. These outcomes imply that the YOLOv8 model is highly effective in the precise detection and classification of compost heaps, thereby providing a novel approach for assessing the management grades of compost heaps and contributing to non-point source pollution management. This study suggests that utilizing UAVs and deep learning technologies for detecting and managing compost heaps can address the constraints linked to traditional field survey methods, thereby facilitating the establishment of accurate and effective non-point source pollution management strategies, and contributing to the safeguarding of aquatic environments.
Journal of the Korean Applied Science and Technology
/
v.41
no.2
/
pp.472-483
/
2024
This study evaluated the attitudes of the Korean population towards sunscreen use through the Health Belief Model (HBM) construct and investigated the psychological factors that influence sunscreen use. For this purpose, an online survey was conducted from 1 November 2023 to 1 January 2024, and a total of 303 participants were collected. The collected data were analysed using SPSS v. 25.0 programme using Cronbach's 𝛼, frequency analysis, descriptive statistics, correlation analysis, independent samples t-test, one way ANOVA, Scheffe's test, and multiple regression analysis. The results of the study showed that the mean score of sunscreen use was 3.26±1.384 out of 5, and there was a significant correlation between the variables of the health belief model and sunscreen use (p<.01). Gender, age, and skin colour were also associated with each variable, with women, the elderly, and those with lighter skin tending to be more proactive in sun protection. Multiple regression analyses revealed that self-efficacy (𝛽=.629, p<.001) and perceived vulnerability (𝛽=.139, p<.001), sub-factors of the Health Belief Model, had a statistically significant positive effect on sunscreen use, while perceived barriers (𝛽=-.261, p<.001) had a statistically significant negative effect on sunscreen use. These results may have important theoretical implications for the development and implementation of educational programmes to promote sunscreen use by providing insight into the psychosocial factors that influence sun protection.
Journal of the Institute of Electronics and Information Engineers
/
v.54
no.4
/
pp.99-107
/
2017
This paper proposes a battery model coefficient correction method for improving the accuracy of existing lithium battery equivalent models. BMS(battery management system) has been researched and developed to minimize shortening of battery life by keeping SOC(state of charge) and state of charge of lithium battery used in various industrial fields such as EV. However, the cell balancing operation based on the battery cell voltage can not follow the SOC change due to the internal resistance and the capacitor. Various battery equivalent models have been studied for estimation of battery SOC according to the internal resistance of the battery and capacitors. However, it is difficult to apply the same to all the batteries, and it tis difficult to estimate the battery state in the transient state. The existing battery electrical equivalent model study simulates charging and discharging dynamic characteristics of one kind of battery with error rate of 5~10% and it is not suitable to apply to actual battery having different electric characteristics. Therefore, this paper proposes a battery model coefficient correction algorithm that is suitable for real battery operating environments with different models and capacities, and can simulate dynamic characteristics with an error rate of less than 5%. To verify proposed battery model coefficient calibration method, a lithium battery of 3.7V rated voltage, 280 mAh, 1600 mAh capacity used, and a two stage RC tank model was used as an electrical equivalent model of a lithium battery. The battery charge/discharge test and model verification were performed using four C-rate of 0.25C, 0.5C, 0.75C, and 1C. The proposed battery model coefficient correction algorithm was applied to two battery models, The error rate of the discharge characteristics and the transient state characteristics is 2.13% at the maximum.
Suho Bak;Seon Woong Jang;Heung-Min Kim;Tak-Young Kim;Geon Hui Ye
Korean Journal of Remote Sensing
/
v.39
no.2
/
pp.193-205
/
2023
A large amount of floating debris from land-based sources during heavy rainfall has negative social, economic, and environmental impacts, but there is a lack of monitoring systems for floating debris accumulation areas and amounts. With the recent development of artificial intelligence technology, there is a need to quickly and efficiently study large areas of water systems using drone imagery and deep learning-based object detection models. In this study, we acquired various images as well as drone images and trained with You Only Look Once (YOLO)v5s and the recently developed YOLO7 and YOLOv8s to compare the performance of each model to propose an efficient detection technique for land-based floating debris. The qualitative performance evaluation of each model showed that all three models are good at detecting floating debris under normal circumstances, but the YOLOv8s model missed or duplicated objects when the image was overexposed or the water surface was highly reflective of sunlight. The quantitative performance evaluation showed that YOLOv7 had the best performance with a mean Average Precision (intersection over union, IoU 0.5) of 0.940, which was better than YOLOv5s (0.922) and YOLOv8s (0.922). As a result of generating distortion in the color and high-frequency components to compare the performance of models according to data quality, the performance degradation of the YOLOv8s model was the most obvious, and the YOLOv7 model showed the lowest performance degradation. This study confirms that the YOLOv7 model is more robust than the YOLOv5s and YOLOv8s models in detecting land-based floating debris. The deep learning-based floating debris detection technique proposed in this study can identify the spatial distribution of floating debris by category, which can contribute to the planning of future cleanup work.
Respiration of 'Fuyu' persimmon (Diospyros kaki) fruits were measured in terms of oxygen consumption rate and carbon dioxide evolution by closed system experiments at 0, 5, and $20^{\circ}C$. Enzyme kinetics-based respiration model was used to describe respiration rate as function of $O_2\;and\;CO_2$ gas concentrations $(R=V_m[O_2]/K_m+(1+[CO_2]/K_i)[O_2])$, and Arrhenius equation was applied to analyze temperature effect. $V_m\;and\;K_m$ increased, while $K_i$ decreased, with increasing temperature. $K_m\;of\;O_2$ consumption was greater than that of $CO_2$ evolution at equal temperature. Inhibitory effect of reduced $O_2$ level on $O_2$ consumption was more prominent than that on $CO_2$ evolution. Activation energy of respiration decreased with reduced $O_2$ and elevated $CO_2$ concentrations. Activation energy of $CO_2$ evolution was greater than that of $O_2$ consumption. Permeable package experiments verified respiration model parameters by showing good agreement between predicted and experimental gas concentrations in package.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
1991.06a
/
pp.37-44
/
1991
영산강 하구언 방조제의 건설로 인한 항만 및 이의 인접해역 해면의 변화는 예상한 바 있으며 실제 여러개소에서 월 2회정도의 주기로 목포 구항부근 상업지역에서 해면상승에 따라 주기적으로 침수되는 현상이 나타나고 있다 목포항의 영산강 하구언 방조제 조성으로 인한 조류성분중 최고기록을 가진 수로에서는 6kts 정도로 감소된 것으로 보고되고 있으나 주위자연환경 변화에 따른 수면 상승 및 해수면의 주기적인 변화 등에 대한 상세한 언급 및 깊이 있는 분석은 회피되어왔다. 수자원의 효율적관리를 위해 하구언 방조제는 이미 건설되었고 앞으로 대규모의 항만개발과 대불산업단지조성을 위해 추가 3개의 만입해안해역에 댐으로 해역을 막아 매립공사를 추진하고 있다 그러나 이 지역에 대한 분석은 타당성의 여부만을 강조한 상업적 용역이 이루어지고 있고 장래 개발에 대해 학술적이고 실질적인 문제점 추출과 해결방아네 대해서는 무시하거나 경시한 바가 많다 더구나 태풍 저기압 등과 같은 자연재해를 고려한 분석은 시도되지 못하고 있다 따라서 개발전후의 현상에 대한 상세한 자료 및 현장 조사와 극한 상태를 고려하여 개발에 따른 수위상승 부진동, 조류 수질등 이해역의 변화요소를 수집하고 분석하며 과학적 접근방법에 기초를 둔 수치모델의 실험을 포함하여 현장관측 및 측정자료를 검증하는 것이 필수적이라고 사료되어 종합분석의 한단계로 여기서는 하구언 및 하구간척(Land Reclamatic of Estuary barren)으로 해역축소에 따른 해면변화의 실제현상을 조사하여 정리하고 이를 수치모델을 통해 시뮬레이션하여 보았다 이는 종합개발의 좋은 기초자료로 이용됨은 물론이로 이지역의 개발에 기여할 것으로본다.적절하게 가정된 지반의 응력-변형률 관계와 간극수압특성에 의하여 고려되었다. 그 결과 응력 및 변위가 심하게 발생하는 지역은 황색 점토층이었으며 이로부터 황색 점토층에서 부터 파괴면이 생성되어 다른 지역으로 전파되었음을 유추할 수 있었다.form trap with 2.88[eV] deep of injected space charge from the chathode in the crystaline regions. The origin of ${\alpha}$$_2$ peak was regarded as the detrapping process of ions trapped with 0.9[eV] deep originated from impurity-ion remained in the specimen during production process of the material, in the crystalline regions. The origin of ${\beta}$ peak was concluded to be due to the depolarization process of "C=0"dipole with the activation energy of 0.75[eV] in the amorphous regions. The origin of ${\gamma}$ peak was responsible to the process combined with the depolarization of "CH$_3$", chain segment, with the activation energy of ca
Journal of the Korea institute for structural maintenance and inspection
/
v.24
no.2
/
pp.60-67
/
2020
Recently, many studies have been conducted on the structural behavior of HPFRCC, but most of the studies focused on the flexural behavior while studies on the shear behavior are limited. In this study, a model has been developed to reasonably predict the shear strength of a HPFRCC beam without stirrups. To develop the model, a HPFRCC beam was simply idealized with upper & lower chords resisting bending moment and a web shear element resisting shear forces. Then, taking into the account of the tensile behavior of HPFRCC, the main diagonal compressive strut angle and shear stress of the web shear element were evaluated on shear failure. Then, the shear strength of the HPFRCC beam could be evaluated. For the verification of the proposed model, the predictions by the proposed model were compared with the test results of 48 HPFRCC beams exhibiting shear failure. The results showed that the proposed model reasonably predicted the actual shear strength with an average of 1.045 and CoV of 0.125. This study are expected to be useful for related researches and design of members or structures to which HPFRCC is applied.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.