• Title/Summary/Keyword: Utility frequency

Search Result 352, Processing Time 0.04 seconds

A Utility Interactive Photovoltaic Generation System using PWM Chopper and Current Source Inverter (PWM 쵸퍼와 전류형 인버터를 이용한 계통연계형 태양광발전시스템)

  • 이승환;성낙규;오봉환;검성남;이훈구;김용주;한경희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.323-329
    • /
    • 1998
  • In this paper, we compose of the utility interactive photovoltaic(PV) generation system with a PWM stepdown chopper and a current source inverter. The stepdown chopper is controlled by the several gate pulses (twice frequency of utility voltage, square pulse and without the chopper) of chopper part to reduce pulsation of DC current and size of DC reactor. PV current only is measured for maximum power point tracking without any influence on the variation of insolation and temperature. Therefore, we can control modulation factor of the chopper to operate at maximum power point of solar cell. And, the utility interactive photovoltaic generation system supplies an AC power to the load and the utility power system.

  • PDF

Sinewave-PWM ZVS Inverter using High-Frequency Transformer for Utility AC Voltage Link

  • Chandhaket S.;Ogura K.;Konishi Y.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.511-515
    • /
    • 2003
  • This paper presents a novel prototype of the utility-interfaced sinusoidal pulse width modulated (SPWM) inverter using the high-frequency flyback transformer fur the small-scale solar photo-voltaic power conditioner (1kW - 4kW). The proposed SPWM power conditioner circuit with a high-frequency link has a function of electrical isolation, which is vital fur solar photovoltaic power conditioner systems with the viewpoint of safety and convenience. The discontinuous conduction mode (DCM) operation of the flyback transformer is also maintained to simplify the topology of the inverter circuit and control scheme. First, the operating principle of the proposed circuit is described far the understanding of the circuit parameters establishment. Then, the digitally constructed SPWM control scheme is presented. The proposed circuit is verified by the computer simulation and the prototype experiment.

  • PDF

A Study of Non-Detection Zone using AFD Method applied to Grid-Connected Photovoltaic Inverter for a variety of Loads (계통연계형 태양광발전 인버터에 사용된 AFD기법의 다양한 부하에 따른 단독운전 불검출영역에 대한 고찰)

  • Ko, Moon-Ju;Choy, Ick;Choi, Ju-Yeop
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.1
    • /
    • pp.91-98
    • /
    • 2006
  • Islanding phenomenon of utility-connected photovoltaic power conditioning systems(PV PCS) can cause a variety of problems and must be prevented. If the real and reactive power supplied by PV PCS are closely matched to those of load, islanding detection by passive methods becomes difficult. The active frequency drift(AFD) method, called the frequency bias method, enables islanding detection by forcing the frequency of the voltage in the islanding to drift up or down. In this paper, non-detection zone(NDZ) of AFD is analyzed for the islanding detection method of utility-connected PV PCS by the simulation software tool PSIM.

Utility Interactive Inverter with High-frequency Link for Photovoltaic Power System (고주파링크 방식을 이용한 계통연계형 태양광발전시스템)

  • Jung, Y.S.;Yu, G.W.;Lee, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1050-1052
    • /
    • 2000
  • An investigation into power conditioners that interface with photovoltaic array and utilities has been completed. The rating for this investigation is residential system (3-5kW) that interface with a 220V single phase utility connection. As the result of this investigation. a 3kW high frequency PWM IGBT inverter feeding a high frequency isolation transformer with a sinusoidal current wave was selected. The output of the transformer rectified with a diode bridge rectifier four IGBT, used as 60Hz switched, reverse the polarity of the rectified current on every other half cycle of the utility voltage. Even though the high frequency link system used more power semiconductors, a net size, weight, and parts cost saving result compared to the other systems due to elimination of 60Hz transformer.

  • PDF

Utility-Interactive Modulated Sinewave Inverter with a High Frequency Flyback Transformer Link for Small-Scale Solar Photovoltaic Generator

  • Konishi Y.;Chandhaket S.;Ogura K.;Nakaoka M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.683-686
    • /
    • 2001
  • This paper presents a novel prototype of the utility­interactive voltage source type sinewave pulse modulated power inverter using a high-frequency flyback transformer link. The proposed power conditioner circuit for the solar photovoltaic generation and small scale fuel cell has an isolation function due to the safety of the power processing system, which is more cost effective and acceptable for the small-scale distributed renewal energy conditioning and processing systems. The discontinuous current mode(DCM) of this power processing conversion circuit is applied to implement a simple circuit topology and pulse modulated control scheme. Its operation principle is described on the basis of simulation evaluations and theoretical considerations. The simulation results obtained herein prove that the proposed inverter outputs with sinusoidal waveforms and unity power factor currents are synchronized to the main voltage in utility power source grid. In this paper, the soft switching topology of high­frequency linked sinewave pulse modulation inverter is proposed and discussed.

  • PDF

A Clock System including Low-power Burst Clock-data Recovery Circuit for Sensor Utility Network (Sensor Utility Network를 위한 저전력 Burst 클록-데이터 복원 회로를 포함한 클록 시스템)

  • Song, Changmin;Seo, Jae-Hoon;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.858-864
    • /
    • 2019
  • A clock system is proposed to eliminate data loss due to frequency difference between sensor nodes in a sensor utility network. The proposed clock system for each sensor node consists of a bust clock-data recovery (CDR) circuit, a digital phase-locked loop outputting a 32-phase clock, and a digital frequency synthesizer using a programmable open-loop fractional divider. A CMOS oscillator using an active inductor is used instead of a burst CDR circuit for the first sensor node. The proposed clock system is designed by using a 65 nm CMOS process with a 1.2 V supply voltage. When the frequency error between the sensor nodes is 1%, the proposed burst CDR has a time jitter of only 4.95 ns with a frequency multiplied by 64 for a data rate of 5 Mbps as the reference clock. Furthermore, the frequency change of the designed digital frequency synthesizer is performed within one period of the output clock in the frequency range of 100 kHz to 320 MHz.

A Novel Anti-Islanding Method for Utility Interconnection of Distributed Power Generation Systems

  • In-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.4
    • /
    • pp.217-224
    • /
    • 2004
  • A novel anti-islanding method for the distributed power generation system (DPGS) is proposed in this paper. Three different islanding scenarios are explored and presented based on the analysis of real and reactive power mismatch. It is shown via investigation that islanding voltage is a function of real power alone, where its frequency is a function of both real and reactive power. Following this analysis, a robust anti-islanding algorithm is developed. The proposed algorithm continuously perturbs ($\pm$5%) the reactive power supplied by the DPGS while simultaneously monitoring the utility voltage and frequency. In the event of islanding, a measurable frequency deviation takes place, upon which the real power of the DPGS is further reduced to 80%. A drop in voltage positively confirms islanding and the DPGS is then safely disconnected. This method of control is shown to be robust: it is able to detect islanding under resonant loads and is also fast acting (operable in one cycle). Possible islanding conditions are simulated and verified through analysis. Experimental results on a 0.5kW fuel cell system connected to a utility grid are discussed.

Utility-Connected Solar Power Conditioner Using Edge-Resonant Soft Switching Duty Cycle Sinewave Modulated Inverter Link

  • Ogura, Koki;Chandhaket, Srawouth;Nakaoka, Mutsuo;Terai, Haruo;Sumiyoshi, Shinichiro;Kitaizumi, Takeshi;Omori, Hideki
    • Journal of Power Electronics
    • /
    • v.2 no.3
    • /
    • pp.181-188
    • /
    • 2002
  • The utility interfaced sinewave modulation Inverter for the solar photovoltaic power conditioner with a high frequency transformer is presented for residential applications. As compared with the conventional full-bridge hard switching slnewave PWM inverter with a high frequency link, the simplest single-ended edge-resonant soft switching sinewave inverter with a sinewave duty cycle pulse control scheme is implemented, resulting in size and weight reduction, low cost and high efficiency This paper presents a prototype system of the sinewave zero voltage soft switching sinewave inverter for solar power conditioner, along with its operating principle and unique features. In addition to these, this paper discusses a control implementation to deliver high quality output current. Major design of each component and the power loss analysis under actual power processing is also discussed and evaluated from an experimental point of view A newly developed utility-connected sinewave power conditioning circuit which achieves 92.5% efficiency under 4kW output is demonstrated.

The Instantaneous Phase-Tracking in PLL using the DFT Algorithm (DFT 알고리즘을 이용한 PLL의 순시 추종)

  • Kim, Youn-Seo;Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.6
    • /
    • pp.141-148
    • /
    • 2008
  • An utility voltage information, including the frequency, phase angle and amplitude is very important in many industrial systems. The grid-connected photovoltaic system in the limelight as alternative energy needs utility voltage information such as frequency, phase angle and magnitude to connect the grid-line. In this paper, it proposes the instantaneous phase-tracking in PLL that uses the frequency from the utility voltage as a sync signal and locks the phase with compensation for phase difference from DPT algorithm. It also proposes not only DFT algorithm execution by every sample not by one period, but also phase-tracking method in a wide range of frequency not a fixed one. This paper shows the feasibility and the usefulness of the proposed methods through the computer simulation and the experiment.

Digital PLL Control for Phase-Synchronization of Grid-Connected PV System (계통 연계형 태양광 발전 시스템의 위상 동기화를 위한 디지털 PLL 제어)

  • 김용균;최종우;김흥근
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.9
    • /
    • pp.562-568
    • /
    • 2004
  • The frequency and phase angle of the utility voltage are important in many industrial systems. In the three-phase system, they can be easily known by using the utility voltage vector. However, in the case of single phase system, there are some difficulties in detecting the information of utility voltage. In conventional system, the zero-crossing detection method is widely used, but could not obtain the information of utility voltage instantaneously. In this paper, the new digital PLL control using virtual two phase detector is proposed with a detailed analysis of single-phase digital PLL control for utility connected systems. The experimental results under various utility conditions are presented and demonstrate an excellent phase tracking capability in the single-phase grid-connected operation.