• Title/Summary/Keyword: Usually measured monitoring

Search Result 43, Processing Time 0.032 seconds

Optimal Conditions of Single Cell Gel Electrophoresis (Comet) Assay to detect DNA single strand breaks in Mouse Lymphoma L5178Y cells

  • Ryu, Jae-Chun;Kwon, Oh-Seung;Kim, Hyung-Tae
    • Environmental Mutagens and Carcinogens
    • /
    • v.21 no.2
    • /
    • pp.89-94
    • /
    • 2001
  • Recently, single cell gel electrophoresis, also known as comet assay, is widely used for the detection and measurement of DNA strand breaks in vitro and in vivo in many toxicological fields such as radiation exposure, human monitoring and toxicity evaluation. As well defined, comet assay is a sensitive, rapid and visual method for the detection of DNA strand breaks in individual cells. Briefly, a small number of damaged cells suspended in a thin agarose gel on a microscope slide were lysed, unwinded, electrophoresed, and stained with a fluorescent DNA binding dye. The electric current pulled the charged DNA from the nucleus such that relaxed and broken DNA fragments migrated further. The resulting images which were subsequently named for their appearance as comets, were measured to determine the extent of DNA damages. However, some variations could be occurred in procedures, laboratories's conditions and kind of cells used. Hence, to overcome and to harmonize these matters in comet assay, International Workshop on Genotoxicity Test Procedure (IWGTP) was held with several topics including comet assay at Washington D.C. on March, 1999. In spite of some consensus in procedures and conditions in IWGTP, there are some problems still remained to be solved. In this respect, we attempted to set the practical optimal conditions in the experimental procedures such as lysis, unwinding, electrophoresis and neutralization conditions and so on. First of all, we determined optimal lysis and unwinding time by using 150 $\mu$M methyl methanesulfonate (MMS) which is usually used concentration. And then, we determined optimal positive control concentrations of benzo(a)pyrene (BaP) and MMS in the presence and absence of S9 metabolic activation system, respectively.

  • PDF

Modified parity space averaging approaches for online cross-calibration of redundant sensors in nuclear reactors

  • Kassim, Moath;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.50 no.4
    • /
    • pp.589-598
    • /
    • 2018
  • To maintain safety and reliability of reactors, redundant sensors are usually used to measure critical variables and estimate their averaged time-dependency. Nonhealthy sensors can badly influence the estimation result of the process variable. Since online condition monitoring was introduced, the online cross-calibration method has been widely used to detect any anomaly of sensor readings among the redundant group. The cross-calibration method has four main averaging techniques: simple averaging, band averaging, weighted averaging, and parity space averaging (PSA). PSA is used to weigh redundant signals based on their error bounds and their band consistency. Using the consistency weighting factor (C), PSA assigns more weight to consistent signals that have shared bands, based on how many bands they share, and gives inconsistent signals of very low weight. In this article, three approaches are introduced for improving the PSA technique: the first is to add another consistency factor, so called trend consistency (TC), to include a consideration of the preserving of any characteristic edge that reflects the behavior of equipment/component measured by the process parameter; the second approach proposes replacing the error bound/accuracy based weighting factor ($W^a$) with a weighting factor based on the Euclidean distance ($W^d$), and the third approach proposes applying $W^d$, TC, and C, all together. Cold neutron source data sets of four redundant hydrogen pressure transmitters from a research reactor were used to perform the validation and verification. Results showed that the second and third modified approaches lead to reasonable improvement of the PSA technique. All approaches implemented in this study were similar in that they have the capability to (1) identify and isolate a drifted sensor that should undergo calibration, (2) identify a faulty sensor/s due to long and continuous missing data range, and (3) identify a healthy sensor.

Investigation on spanwise coherence of buffeting forces acting on bridges with bluff body decks

  • Zhou, Qi;Zhu, Ledong;Zhao, Chuangliang;Ren, Pengjie
    • Wind and Structures
    • /
    • v.30 no.2
    • /
    • pp.181-198
    • /
    • 2020
  • In the traditional buffeting response analysis method, the spanwise incomplete correlation of buffeting forces is always assumed to be same as that of the incident wind turbulence and the action of the signature turbulence is ignored. In this paper, three typical bridge decks usually adopted in the real bridge engineering, a single flat box deck, a central slotted box deck and a two-separated paralleled box deck, were employed as the investigated objects. The wind induced pressure on these bridge decks were measured via a series of wind tunnel pressure tests of the sectional models. The influences of the wind speed in the tests, the angle of attack, the turbulence intensity and the characteristic distance were taken into account and discussed. The spanwise root coherence of buffeting forces was also compared with that of the incidence turbulence. The signature turbulence effect on the spanwise root coherence function was decomposed and explained by a new empirical method with a double-variable model. Finally, the formula of a sum of rational fractions that accounted for the signature turbulence effect was proposed in order to fit the results of the spanwise root coherence function. The results show that, the spanwise root coherence of the drag force agrees with that of incidence turbulence in some range of the reduced frequency but disagree in the mostly reduced frequency. The spanwise root coherence of the lift force and the torsional moment is much larger than that of the incidence turbulence. The influences of the wind speed and the angle of attack are slight, and they can be ignored in the wind tunnel test. The spanwise coherence function often involves several narrow peaks due to the signature turbulence effect in the high reduced frequency zone. The spanwise coherence function is related to the spanwise separation distance and the spanwise integral length scales, and the signature turbulence effect is related to the deck-width-related reduced frequency.

Index Analysis Approach to Identifying Accident Concentration Level of Korean Industries (국내 산업재해집중수준 확인을 위한 지표분석)

  • Lee, Bong Keun;Suh, Yongyoon;Chang, Seong Rok
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.59-65
    • /
    • 2020
  • For monitoring the status of industrial accidents, many statistical indexes have been developed and applied such as fatal rate, frequency rate, and severity rate. These accident indexes are measured by frequency and loss time according to the accidents in the individual industry level. However, it is less considered to use the index of identifying the industrial concentration of accidents in the holistic view. Thus, this study aims to suggest the accident concentration level among domestic industries through index analysis. The concentration level of industrial accidents is calculated by the accident composition of sub-industries. This concentration level shows whether an industry is comprised of a few sub-industries generating more accidents or an industry consists of sub-industries having the similar number of accidents. To this end, the concentration rate (CR) and concentration index (CI) are proposed to take a look at the industry composition of accidents by embracing the concept of market concentration indexes such as Hirschman-Herfindahl Index. As for the case study, four industries of mining, manufacturing, transportation, and other business (usually service) are analyzed in terms of indexes of accident rate, death(fatality) rate, and CR and CI of accident and death. Finally, we illustrate the positioning map that the accident concentration level is compared with the traditional accident frequency level among industries.

Radiation Monitoring in the Residential Environment: Time Dependencies of Air Dose Rate and 137Cs Inventory

  • Yoshimura, Kazuya;Nakama, Shigeo;Fujiwara, Kenso
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.1
    • /
    • pp.30-38
    • /
    • 2022
  • Background: Residential areas have some factors on the external exposure of residents, who usually spend a long time in these areas. Although various survey has been carried out by the government or the research institutions after the Fukushima Daiichi Nuclear Power Plant accident, the mechanism of radiocesium inventory in the terrestrial zone has not been cleared. To better evaluate the radiation environment, this study investigated the temporal changes in air dose rate and 137Cs inventories (Bq/m2) in residential areas and agricultural fields. Materials and Methods: Air dose rate and 137Cs inventories were investigated in residential areas located in an evacuation zone at 5-8 km from the Fukushima Daiichi Nuclear Power Plant. From December 2014 to September 2018, the air dose rate distribution was investigated through a walking survey (backpack survey), which was conducted by operators carrying a γ-ray detector on their backs. Additionally, from December 2014 to January 2021, the 137Cs inventories on paved and permeable grounds were also measured using a portable γ-ray detector. Results and Discussion: In the areas where decontamination was not performed, the air dose rate decreased faster in residential areas than in agricultural fields. Moreover, the 137Cs inventory on paved surfaces decreased with time owing to the horizontal wash-off, while the 137Cs inventory on permeable surfaces decreased dramatically owing to the decontamination activities. Conclusion: These findings suggest that the horizontal wash-off of 137Cs on paved surfaces facilitated the air dose rate decrease in residential areas to a greater extent compared with agricultural fields, in which the air dose rate decreased because of the vertical migration of 137Cs. Results of this study can explain the faster environmental restoration in a residential environment reported by previous studies.

Extraction of Ocean Surface Current Velocity Using Envisat ASAR Raw Data (Envisat ASAR 원시자료를 이용한 표층 해류 속도 추출)

  • Kang, Ki-Mook;Kim, Duk-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.11-20
    • /
    • 2013
  • Space-borne Synthetic Aperture Radar(SAR) has been one of the most effective tools for monitoring quantitative oceanographic physical parameters. The Doppler information recorded in single-channel SAR raw data can be useful in estimating moving velocity of water mass in ocean. The Doppler shift is caused by the relative motion between SAR sensor and the water mass of ocean surface. Thus, the moving velocity can be extracted by measuring the Doppler anomaly between extracted Doppler centroid and predicted Doppler centroid. The predicted Doppler centroid, defined as the Doppler centroid assuming that the target is not moving, is calculated based on the geometric parameters of a satellite, such as the satellite's orbit, look angle, and attitude with regard to the rotating Earth. While the estimated Doppler shift, corresponding to the actual Doppler centroid in the situation of real SAR data acquisition, can be extracted directly from raw SAR signal data, which usually calculated by applying the Average Cross Correlation Coefficient(ACCC). The moving velocity was further refined to obtain ocean surface current by subtracting the phase velocity of Bragg-resonant capillary waves. These methods were applied to Envisat ASAR raw data acquired in the East Sea, and the extracted ocean surface currents were compared with the current measured by HF-radar.

Development of Micro Wired pH Electrode for Real-Time Monitoring for Gastroesophageal Reflux (위식도 역류 실시간 모니터링 마이크로 와이어 pH 전극 개발)

  • Kim, Eung-Bo;Lee, Kyu-Jin;So, Sang-Kyun;Joung, Yeun-Ho;Park, Jung Ho;Kim, Nam Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.277-284
    • /
    • 2017
  • This paper presents an implantable pH measurement electrode for wireless gastroesophageal reflux measurement. Usually, gastroesophageal reflux is diagnosed by a catheter-type wire connection between the esophagus and the diagnostic device which brings many side effects such as restriction of daily living, pain, and discomfort in the nasal cavity and pharynx of patients. In order to solve these issues, researchers have been studied a wireless measurement method and a micro-sized pH electrode for human body insertion is necessary. Commercial glass packaged pH meter is formed by a sensing and a reference electrodes in a KCl solution. However, if the glass meter is inserted into the human body, there are risks of leakage of the solution, breakage of the glass package, injury of the body elements. Therefore, the solution should be solidified on the micro-sized noble metal wire which has a characteristic of biocompatible. After solidified wire fabrication, the designed meter was tested for feasibility of measurement and the result was well agreed with pH values of commercial pH meter. Potentials in pH 1 to 12 solution was measured to obtain the sensitivity of the sensor with linearity. And we have designed a simulation of gastroesophageal reflux with symptom frequency, interval, and duration time in pH 2 solution. The proposed sensor has capable to get the same potential for 24 measurements in 3 days, and it has sensed same pH values of 2 for one hour with every 10 minutes. Furthermore, the sensor was survived for 48 hours with reasonable potentials in the acid solution.

Vapor Recognition Using Image Matching of Micro-Array Sensor Response from Portable Electronic Nose (휴대용 전자 후각 장치에서 다채널 마이크로 센서 신호의 영상 정합을 이용한 가스 인식)

  • Yang, Yoon-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.2
    • /
    • pp.64-70
    • /
    • 2011
  • Portable artificial electronic nose (E-nose) system suffers from noisy fluctuation in surroundings such as temperature, vapor concentration, and gas flow, because its measuring condition is not controled precisely as in the laboratory. It is important to develop a simple and robust vapor recognition technique applicable to this uncontrolled measurement, especially for the portable measuring and diagnostic system which are expanding its area with the improvements in micro bio sensor technology. This study used a PDA-based portable E-nose to collect the uncontrolled vapor measurement signals, and applied the image matching algorithm developed in the previous study on the measured signal to verify its robustness and improved accuracy in portable vapor recognition. The results showed not only its consistent performance under noisy fluctuation in the portable measurement signal, but also an advanced recognition accuracy for 2 similar vapor species which have been hard to discriminate with the conventional maximum sensitivity feature extraction method. The proposed method can be easily applied to the data processing of the ubiquitous sensor network (USN) which are usually exposed to various operating conditions. Furthermore, it will greatly help to realize portable medical diagnostic and environment monitoring system with its robust performance and high accuracy.

24 Hour Esophageal PH Monitoring in Preterm Infants (미숙아에서의 24시간 식도 PH 검사)

  • Park, Jeung-Hyun;Park, Beom-Soo
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.4 no.2
    • /
    • pp.133-141
    • /
    • 2001
  • Purpose: Gastroesophageal reflux (GER) has been found to be the causative factors of apnea, stridor, feeding intolerance, poor weight gain, and sudden infants death syndrome (SIDS) in infants. GER is a well-described in infants and children, but only scant mention of the premature infants with GER can be found in the literature. Methods: Esophageal pH was measured during 24 hour in 21 healthy preterm infants, using a silicone microelectrode with an external reference electrode connected to a portable recorder. The mean age of the patients was $29{\pm}8$ days, mean gestational age was $30^{+5}{\pm}2^{+0}$ weeks, mean birth weight was $1,468{\pm}329$ g, mean postconceptional age was $34^{+6}{\pm}1^{+4}$ weeks and mean weight was $1,750{\pm}329$ g. We evaluated the following reflux parameters; number of acid reflux, number of long acid reflux, longest acid reflux minutes, and reflux index. Results: Pathologic GER was detected in 12 (57%) subjects and most interesting parameters are reflux index and number of episodes with a pH<4 during 24 hour (high correlation with postprandial reflux index). Reflux was not correlated to gestational age, birth weight, age, postconceptional age, weight, sex and medication of the theophylline. Conclusion: Gastroesophageal reflux is common in preterm infants, but it is usually not apparent, even with severe reflux.

  • PDF

Nutrient Load Balance in Large-Scale Paddy Fields during Rice Cultivation (경지 정리된 광역 논에서 영양물질 수지와 배출 특성)

  • Kim, Min-Kyeong;Roh, Kee-An;Lee, Nam-Jong;Seo, Myung-Chul;Koh, Mun-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.3
    • /
    • pp.164-171
    • /
    • 2005
  • The aim of this study was to evaluate the load of nutrient from paddy fields. Water management practices that can reduce eutrophication and meet water quality requirements will also be addressed. Continuous monitoring from May to September in 2002 and 2003 was conducted for water quantification and qualification at the intensive paddy fields in Icheon, Gyunggi province of Korea. Water balance and concentration variation of nitrogen and phosphorus in the water were independently compared for water quality assessment at each rice cultivation period. Rice land preparation and transplanting periods usually marked the highest water demand when compared to other periods of cultivation. Overall, a greater net irrigation ratio was observed during the transplanting period in 2002 (92.3%) and 2003 (87.2%). The measured total N loads of precipitation, irrigation, drainage, and percolation during the rice cultivation period were 9.9, 41.6, 22.1, and $5.5kg\;ha^{-1}$ for 2002 and 15.8, 55.4, 17.3, and $7.5kg\;ha^{-1}$ for 2003, respectively. The measured total P loads of precipitation, irrigation, drainage, and percolation during the rice cultivation period were 2.1, 13.0, 3.6, and $1.8kg\;ha^{-1}$ for 2002 and 1.6, 15.0, 5.0, and $1.2kg\;ha^{-1}$ for 2003, respectively. Daily nutrient load followed the pattern of surface drainage water, but this pattern was changed by rainfall events. The nutrient load in drainage water depends on rainfall and surface drainage water amount from the paddy fields. Interestingly, the load of total N and total P output was smaller than the input load due to the natural infiltration that Occurred during the rice cultivation period. It is concluded that the paddy fields have a beneficial effect on the ecosystem and can reduce eutrophication in the water.