• Title/Summary/Keyword: Using Smart Factory

Search Result 230, Processing Time 0.027 seconds

A Study on SCM Improvement Plan using the Internet of Things (사물인터넷을 활용한 SCM 고도화 방안에 대한 연구)

  • Kim, MinJune;KIM, YoungKil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.553-554
    • /
    • 2018
  • Supply Chain Management (SCM) is the overall process (component procurement, production planning, delivery, inventory control, etc.). It is the process from the supplier to the consumer until the raw material becomes the finished product. Basically, traditional supply chain management is primarily aimed at cost reduction and efficiency. However, considering only cost reduction and efficiency, it is not easy apply the center of 4th industry to Smart Factory. In this study, I propose a form of supply chain management network. It can be satisfy the security by using block chain and automatic control of each element by adding the internet of things.

  • PDF

Design of Voice Control Solution for Industrial Articulated Robot (산업용 다관절로봇 음성제어솔루션 설계)

  • Kwak, Kwang-Jin;Kim, Dae-Yeon;Park, Jeongmin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.55-60
    • /
    • 2021
  • As the smart factory progresses, the use of automation facilities and robots is increasing. Also, with the development of IT technology, the utilization of the system using voice recognition is also increasing. Voice recognition technology is a technology that stands out in smart home and various IoT technologies, but it is difficult to apply to factories due to the specificity of factories. Therefore, in this study, a method to control an industrial articulated robot was designed using voice recognition technology that considers the situation at the manufacturing site. It was confirmed that the robot could be controlled through network protocol and command conversion after receiving voice commands for robot operation through mobile.

A Study on Smart Factory Introduction Cases and Sustainable Effect (스마트팩토리 도입사례와 효과 지속성에 관한 연구)

  • Son, Young-Jin;Choi, Hwan Young
    • Journal of Practical Engineering Education
    • /
    • v.14 no.1
    • /
    • pp.127-136
    • /
    • 2022
  • As manufacturing items have changed in various ways, changes in the mass production of small-scale small-scale production of multiple varieties have become commonplace. As a result, the method of the manufacturing site has also changed, and the "smart factory," which emphasizes the production efficiency aspect using automation lines and big data of factories, is in the spotlight according to the global market economy. The introduction performance of smart factories has a positive effect in terms of production efficiency and is drawing a steep upward curve. In addition to the positive aspects, the aspect that needs to be supplemented in the future is the support and cooperation of specialized smart equipment suppliers, but education on standardized smart factories and the relocation of existing manpower, education, evaluation, and creative production that robots cannot replace Various support measures are also needed for activities. In addition, continuous management and systematic education are required to enter the upper stage. Through the case of companies that have built smart factories, it is intended to emphasize the need for proper use of manpower and support management for settlement and maintenance after introduction and continuous on-the-job training through the comparison of productivity before and after introduction to ensure the effect continues.

Smart Warehouse Management System Utilizing IoT-based Autonomous Mobile Robot for SME Manufacturing Factory (중소제조기업을 위한 IoT기반의 자율이동모듈을 활용한 스마트 창고관리 시스템 개발)

  • Kim, Jeong-A;Jeong, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.237-244
    • /
    • 2018
  • The Smart Factory level of manufacturing factories of SMEs now lacks a system for grasping the accurate inventory amount associated with inventory movements in managing warehouses at the basic level. Also, it is difficult to manage accurate materials for loss of data due to worker manual work and production method due to experience. In order to solve this problem, in this paper, automatic acquisition of inventory to minimize manual work to grasp workers' Inventory and improve automation is done. In the smart warehouse management system using the IoT-based autonomous mobile module, the autonomous mobile module acquires the data of the inventory storage while moving through the line. In order to grasp the material of the Inventory storage, The Camera module recognizes the name of the inventory storage. And Then, If output matches, the data measured by the sensor is transferred to the server. This data can be processed, saved in a database, and real-time inventory quantity and location can be grasped in a web-based monitoring environment for administrators. The Real-time Automatic Inventory (RAIC) systems is reduce manual tasks and expect the effects of automated inventory management systems.

A Study On Power Data Analysis And Risk Situation Prediction Using Smart Plug (스마트 플러그를 이용한 전력 데이터 분석 및 위험 상황 예측에 관한 연구)

  • Jung, Se Hoon;Kim, June Young;Park, Jun;Jang, Seung Min;Sim, Chun Bo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.7
    • /
    • pp.870-882
    • /
    • 2020
  • It is that failure of equipment at the factory site causes personal injury and property damage. We are required a real-time monitoring and risk forecasting techniques to prevent for equipment failure. In this paper, we proposed a 3-phase smart plug and real-time monitoring system that can be used in factories, and collected environmental information and power information using a smart plug to analyze the data. In order to analyze the correlation between the risk situation and the collected data, we predicted the risk situation using Linear Regression, SVM, and ANN algorithms. As a result, the SVM and ANN algorithms obtained high predictive accuracy and developed a mobile app that could use it to check the risk forecast results.

A Study on the Utilization of Retired Professionals for SME's Smart Factory Construction: Focusing on the Mediating Effect of Smart Meister Competence (중소기업의 스마트팩토리 구축을 위한 퇴직전문인력 활용에 관한 연구: 스마트 마이스터 역량의 매개효과를 중심으로)

  • Koo, Il Seob
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.4
    • /
    • pp.83-92
    • /
    • 2021
  • The construction of smart factories for government SMEs is not easy due to the lack of professional manpower. The use of retired professionals is a way to solve the problem to some extent and to solve the job problem of seniors by effectively utilizing social assets. This study examines the effectiveness of using Meister based on a survey of 195 companies participating in the Smart Meister Support Program. As a result, the better pre-participation readiness and the better management and coordination of change during the participation, the more significant influence was on Meister's ability development and corporate performance. In particular, it was confirmed that Meister's competence plays a role in both 'pre-participation readiness and business performance' and 'between change management during participation and business performance'. In order to improve the performance of the smart meister business in the future, it is necessary to proactively promote the purpose and purpose of the business targeting companies that wish to participate in the business. In addition, it was found that it is necessary to support the development of change management in order to minimize the resistance to innovation during the project. It will be possible to enhance social competitiveness by resolving senior jobs and strengthening the competitiveness of SMEs by discovering and utilizing Meister, who is an expert among retirees.

Manufacturing Data Aggregation System Design for Applying Supply Chain Optimization Technology (공급망 최적화 기술 적용을 위한 제조 데이터 수집 시스템)

  • Hwang, Jae-Yong;Shin, Seong-Yoon;Kang, Sun-Kyoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1525-1530
    • /
    • 2021
  • By applying AI-based efficient inventory management and logistics optimization technology using the smart factory's production plan and manufacturing data, the company's productivity improvement and customer satisfaction can be expected to increase. In this paper, we proposed a system that collects data from the factory's production process, stores it in the cloud, and uses the manufacturing data stored there to apply AI-based supply chain optimization technology later. While the existing system supported approximately 10 to 20 data types, the proposed system is designed and developed to support more than 100 data types. In addition, in the case of the collection cycle, data can be collected 1-2 times per second, and data collection in TB units is possible. Therefore This system is designed to be applied to the existing factory of past in addition to the smart factory.

Implementation of Water Depth Indicator using Contactless Smart Sensors (비접촉식 스마트센서 기반 수위측정 방법 구현)

  • Kim, Minhwan;Lee, Jinhee;Song, Giltae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.6
    • /
    • pp.733-739
    • /
    • 2019
  • Water level measurement is highly demanding in IoT monitoring areas such as smart factory, smart farm, and smart fish farm. However, existing water level indicators are limited to be used in industrial fields as commercial products due to the high cost of sensors and the complexity of algorithms used. In order to solve these problems, our paper proposed methods using an infrared distance sensor as well as a hall sensor for the water level measurement, both of which are contactless smart sensors. Data errors caused by the inaccuracy of existing sensors were decreased by applying new simple structures so that versatility is enhanced. The performance of our method was validated using experiments based on simulations. We expect that our new water depth indicator can be extended to a general-purpose water level monitoring system based on IoT technology.

Effect of TRI on UTAUT in Transformation to Smart Factory: Focusing on Small and Medium-sized Manufacturing Companies (스마트 팩토리로의 전환에 있어서 기술준비도가 통합기술수용요인에 미치는 영향: 중소 제조 기업을 중심으로)

  • Lee, Yong-Gyu
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.3
    • /
    • pp.1-17
    • /
    • 2022
  • The purpose of this study is to suggest a plan to improve the level of acceptance of related technologies and the transition to smart factories of small and medium-sized manufacturing enterprises by using 'technology readiness' and 'integrated technology acceptance model'. To this end, the research hypothesis was verified by collecting questionnaire data from 130 small and medium-sized manufacturing companies in Korea and conducting path analysis. First, optimism affects performance expectations, social influence, and facilitation conditions, innovation affects performance expectations, effort expectations, and social influence, discomfort affects performance expectations, social influence, and facilitation conditions, and anxiety affects effort expectations, social influence and facilitation conditions. has been proven to affect Finally, performance expectations, effort expectations, social influence, and facilitation conditions were verified to have a significant positive effect on the intention to accept technology.

Development of Equipment Control System based on DB Access Method for Industrial IoT (Industrial IoT를 위한 데이터베이스 접근 기반 장비 제어 시스템 개발)

  • Cho, Kyoung-woo;Jeon, Min-ho;Oh, Chang-heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1142-1147
    • /
    • 2016
  • Recently, IoT(Internet of Things) has been extensively researching to provide intelligent services by fusing ICT. Especially with the advent of Germany's Industry 4.0, it is emphasized the importance of the industrial IoT to maximize the production capacity. Accordingly, a lot of efforts to spread the smart factory base of industrial IoT have continued domestically as well as abroad. But the current smart factory systems have controlled equipment using the data declared in the embedded systems. Therefore, it is difficult to control environment that lots of equipment is installed. In this paper, we proposed equipment control system based on data base access method for industrial IoT. This method controls the equipment using data base from parameter of equipment. Through experiments that the system apply to mold shot system with a number of variables, it is shown that the proposed method can efficiently control a number of devices.