• Title/Summary/Keyword: Using Computer for Learning

Search Result 3,468, Processing Time 0.049 seconds

Path Planning of Unmanned Aerial Vehicle based Reinforcement Learning using Deep Q Network under Simulated Environment (시뮬레이션 환경에서의 DQN을 이용한 강화 학습 기반의 무인항공기 경로 계획)

  • Lee, Keun Hyoung;Kim, Shin Dug
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.127-130
    • /
    • 2017
  • In this research, we present a path planning method for an autonomous flight of unmanned aerial vehicles (UAVs) through reinforcement learning under simulated environment. We design the simulator for reinforcement learning of uav. Also we implement interface for compatibility of Deep Q-Network(DQN) and simulator. In this paper, we perform reinforcement learning through the simulator and DQN, and use Q-learning algorithm, which is a kind of reinforcement learning algorithms. Through experimentation, we verify performance of DQN-simulator. Finally, we evaluated the learning results and suggest path planning strategy using reinforcement learning.

  • PDF

Improving the Performance of Korean Text Chunking by Machine learning Approaches based on Feature Set Selection (자질집합선택 기반의 기계학습을 통한 한국어 기본구 인식의 성능향상)

  • Hwang, Young-Sook;Chung, Hoo-jung;Park, So-Young;Kwak, Young-Jae;Rim, Hae-Chang
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.9
    • /
    • pp.654-668
    • /
    • 2002
  • In this paper, we present an empirical study for improving the Korean text chunking based on machine learning and feature set selection approaches. We focus on two issues: the problem of selecting feature set for Korean chunking, and the problem of alleviating the data sparseness. To select a proper feature set, we use a heuristic method of searching through the space of feature sets using the estimated performance from a machine learning algorithm as a measure of "incremental usefulness" of a particular feature set. Besides, for smoothing the data sparseness, we suggest a method of using a general part-of-speech tag set and selective lexical information under the consideration of Korean language characteristics. Experimental results showed that chunk tags and lexical information within a given context window are important features and spacing unit information is less important than others, which are independent on the machine teaming techniques. Furthermore, using the selective lexical information gives not only a smoothing effect but also the reduction of the feature space than using all of lexical information. Korean text chunking based on the memory-based learning and the decision tree learning with the selected feature space showed the performance of precision/recall of 90.99%/92.52%, and 93.39%/93.41% respectively.

A study on computer usage and mathematics (컴퓨터 활용과 수학에 대한 연구)

  • Oh, Hye-Young
    • East Asian mathematical journal
    • /
    • v.38 no.2
    • /
    • pp.143-164
    • /
    • 2022
  • Computer technology in mathematics teaching-learning is not for teaching computer but for improving mathematics teaching-learning with computer. It is shown the use of computer technology comparing with traditional approach provides students more opportunities in order to approach abstract structure. Computer activity provides not only understanding concepts of analysis and opportunity to investigate theory but also effective background in teaching analysis. We analyze students' computer usage level on analysis education by using computer usage level according to role of computer technology. We try to get an useful educational implication on analysis education applying MATLAB through qualitative research.

White Blood Cell Types Classification Using Deep Learning Models

  • Bagido, Rufaidah Ali;Alzahrani, Manar;Arif, Muhammad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.9
    • /
    • pp.223-229
    • /
    • 2021
  • Classification of different blood cell types is an essential task for human's medical treatment. The white blood cells have different types of cells. Counting total White Blood Cells (WBC) and differential of the WBC types are required by the physicians to diagnose the disease correctly. This paper used transfer learning methods to the pre-trained deep learning models to classify different WBCs. The best pre-trained model was Inception ResNetV2 with Adam optimizer that produced classification accuracy of 98.4% for the dataset comprising four types of WBCs.

A Learning Algorithm of Fuzzy Neural Networks with Trapezoidal Fuzzy Weights

  • Lee, Kyu-Hee;Cho, Sung-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.404-409
    • /
    • 1998
  • In this paper, we propose a learning algorithm of fuzzy neural networks with trapezoidal fuzzy weights. This fuzzy neural networks can use fuzzy numbers as well as real numbers, and represent linguistic information better than standard neural networks. We construct trapezodal fuzzy weights by the composition of two triangles, and devise a learning algorithm using the two triangular membership functions, The results of computer simulations on numerical data show that the fuzzy neural networks have high fitting ability for target output.

  • PDF

A Study on Jaundice Computer-aided Diagnosis Algorithm using Scleral Color based Machine Learning

  • Jeong, Jin-Gyo;Lee, Myung-Suk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.12
    • /
    • pp.131-136
    • /
    • 2018
  • This paper proposes a computer-aided diagnostic algorithm in a non-invasive way. Currently, clinical diagnosis of jaundice is performed through blood sampling. Unlike the old methods, the non-invasive method will enable parents to measure newborns' jaundice by only using their mobile phones. The proposed algorithm enables high accuracy and quick diagnosis through machine learning. In here, we used the SVM model of machine learning that learned the feature extracted through image preprocessing and we used the international jaundice research data as the test data set. As a result of applying our developed algorithm, it took about 5 seconds to diagnose jaundice and it showed a 93.4% prediction accuracy. The software is real-time diagnosed and it minimizes the infant's pain by non-invasive method and parents can easily and temporarily diagnose newborns' jaundice. In the future, we aim to use the jaundice photograph of the newborn babies' data as our test data set for more accurate results.

Construction on e-learning Platform of Smart Phone Environment (스마트폰 환경에서의 e-learning 플랫폼의 구축)

  • Pyo, Sung-Bae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.11
    • /
    • pp.125-132
    • /
    • 2012
  • In recent years, a variety of learning content construction utilizing the smart phone is coming. In this paper, we investigate on overall trends and movements in e-learning performance at University. And system developed a e-learning platform consisting of smart phone portal, learning management system(LMS), and learning content management system(LCMS). Throughout the experiment, each of the components of the e-learning were implemented. LMS was implemented more efficiently using a user profile evaluation system for qualification.

A STUDY ON THE SIMULATED ANNEALING OF SELF ORGANIZED MAP ALGORITHM FOR KOREAN PHONEME RECOGNITION

  • Kang, Myung-Kwang;Ann, Tae-Ock;Kim, Lee-Hyung;Kim, Soon-Hyob
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.407-410
    • /
    • 1994
  • In this paper, we describe the new unsuperivised learning algorithm, SASOM. It can solve the defects of the conventional SOM that the state of network can't converge to the minimum point. The proposed algorithm uses the object function which can evaluate the state of network in learning and adjusts the learning rate flexibly according to the evaluation of the object function. We implement the simulated annealing which is applied to the conventional network using the object function and the learning rate. Finally, the proposed algorithm can make the state of network converged to the global minimum. Using the two-dimensional input vectors with uniform distribution, we graphically compared the ordering ability of SOM with that of SASOM. We carried out the recognitioin on the new algorithm for all Korean phonemes and some continuous speech.

  • PDF

The Development of e-Learning System for Science and Engineering Mathematics using Computer Algebra System (컴퓨터 대수 시스템을 이용한 이공계 수학용이러닝 시스템 개발)

  • Park, Hong-Joon;Jun, Young-Cook;Jang, Moon-Suk
    • The KIPS Transactions:PartA
    • /
    • v.14A no.6
    • /
    • pp.383-390
    • /
    • 2007
  • This paper describes the e-learning system for science and engineering mathematics using computer algebra system and Bayesian inference network. The best feature of this system is using one of the most recent mathematical dynamic web content authoring model which is called client independent dynamic web content authoring model and using the Bayesian inference network for diagnosing student's learning. The authoring module using computer algebra system provides teacher-user with easy way to make dynamic mathematical web contents. The diagnosis module using Bayesian inference network helps students know the weaker parts of their learning, in this way our system determines appropriate next learning sequences in order to provide supplementary learning feedback.

Data Augmentation Method of Small Dataset for Object Detection and Classification (영상 내 물체 검출 및 분류를 위한 소규모 데이터 확장 기법)

  • Kim, Jin Yong;Kim, Eun Kyeong;Kim, Sungshin
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.2
    • /
    • pp.184-189
    • /
    • 2020
  • This paper is a study on data augmentation for small dataset by using deep learning. In case of training a deep learning model for recognition and classification of non-mainstream objects, there is a limit to obtaining a large amount of training data. Therefore, this paper proposes a data augmentation method using perspective transform and image synthesis. In addition, it is necessary to save the object area for all training data to detect the object area. Thus, we devised a way to augment the data and save object regions at the same time. To verify the performance of the augmented data using the proposed method, an experiment was conducted to compare classification accuracy with the augmented data by the traditional method, and transfer learning was used in model learning. As experimental results, the model trained using the proposed method showed higher accuracy than the model trained using the traditional method.