• 제목/요약/키워드: Users Reviews

검색결과 336건 처리시간 0.022초

In Search of Demanded Mediating Role of TAM between Online Review and Behavior Intention for Promoting Golf App Distribution

  • KIM, Ji-Hye
    • 유통과학연구
    • /
    • 제20권8호
    • /
    • pp.105-114
    • /
    • 2022
  • Purpose: The technology acceptance model (TAM) refers to a theory that maps the possibility or extent to which users can accept an innovative technology. The purpose of the current research is to investigate the mediating effect of TAM between online review and behavior intention for promoting golf app's distribution. Research design, data and methodology: In order to examine the relationship between app usage reviews, TAM, and behavioral intentions of golf app participants, the present author collected total 170 responses from South Korean participants based on web-based survey system. The main methodology which was selected by this study is mediation causality analysis that Baron and Kenny suggested. Results: The statistical findings definitely indicated that TAM mediating role exists between the positive emotion of golf app users regarding online reviews and positive behavior intention of golf app, which means that all three steps of mediation causality analysis were statistically significant. Conclusions: The present research concludes that the correct utilization of innovation in the design and implementation of the technology features translates into performance excellence. The model can be used to increase the online presence through innovation as a primary drive toward providing more convenience and accessibility to the users through mobile golf apps.

온라인 쇼핑몰의 상품평 자동분류를 위한 감성분석 알고리즘 (A Sentiment Analysis Algorithm for Automatic Product Reviews Classification in On-Line Shopping Mall)

  • 장재영
    • 한국전자거래학회지
    • /
    • 제14권4호
    • /
    • pp.19-33
    • /
    • 2009
  • 급속한 전자상거래의 발전으로 인하여 온라인상으로 상품을 구매하고 그에 대한 평가를 작성하는 것이 일반적인 구매 패턴이 되었다. 기존 구매자들의 상품평들은 다른 잠재적인 소비자들의 상품 구입을 이끌어내는데 큰 동기가 된다. 사용자가 작성한 상품평은 하나의 상품에 대해 실제 사용자의 좋고 나쁨에 대한 감정을 표현한 결과로, 개개인에 따라 긍정 또는 부정적인 의견으로 나눠진다. 상품평 중에서 소비자가 원하는 정보를 얻기 위해서는 이들을 일일이 수작업으로 확인해야하지만, 온라인 쇼핑몰에 상품평이 대용량으로 축적된 환경에서 이러한 작업은 비효율적일 수밖에 없다. 본 논문에서는 오피니언 마이닝 기술을 이용하여 제품 사용자의 주관적 의견을 자동으로 분류할 수 있는 감성분석 알고리즘을 제시한다. 본 논문에서 제시하는 알고리즘은 온라인 쇼핑몰에 등록된 개별 상품평을 대상으로 긍정 및 부정 의견으로 판단하여 요약된 결과를 제공하는 기능을 한다. 본 논문에서는 또한 제안된 알고리즘을 바탕으로 개발된 상품평 자동분석 시스템을 소개하고, 알고리즘의 효율성을 검증하기 위한 실험결과도 제시한다.

  • PDF

Privacy Concerns of Smart Speaker Users in South Korea: A Text-mining Analysis

  • Hong Joo Lee;Guglielmo Maccario;Maurizio Naldi
    • Asia pacific journal of information systems
    • /
    • 제33권4호
    • /
    • pp.999-1015
    • /
    • 2023
  • Smart speakers represent a growing product in home electronics. However, their capability to record voices in their immediate surroundings has spurred concerns about privacy violations. In this paper, we assess the extent of those concerns in the opinions of smart speaker users by examining the reviews posted by smart speaker users. We focus on South Korea as a representative of advanced Asian economies. The results show that Korean smart speaker users are either unconcerned or unaware of privacy issues, confirming the results of previous studies about UK users, but with an even lower degree of interest in the topic. However, for the few users concerned about privacy, their attitude towards privacy influences their overall opinion about smart speakers.

개인화 추천시스템에서 고객 제품 리뷰가 사회적 실재감에 미치는 영향 (The Effects of Customer Product Review on Social Presence in Personalized Recommender Systems)

  • 최재원;이홍주
    • 지능정보연구
    • /
    • 제17권3호
    • /
    • pp.115-130
    • /
    • 2011
  • 온라인 스토어들은 다양한 방식으로 사용자들에게 신뢰감을 가져다 줄 수 있는 요인들을 제공하려고 한다. 대표적인 방식이 고객이 좋아할 만한 제품의 추천과 고객제품리뷰의 제공이다. 각각의 제공을 통해 신뢰의 선행요인이 되는 사회적 실재감을 향상시킬 수 있다는 연구들이 있어왔다. 따라서 본 연구에서는 추천 상황에 따른 사회적 실재감에 미치는 영향과 추천 상황과 제품군의 유형, 고객제품리뷰의 제공여부에 따라 사회적 실재감의 증가에 미치는 영향을 실험을 통해 분석하였다. 개인화 추천을 통해 사회적 실재감을 증대시킬 수 있었으며, 쾌락재에서는 고객제품리뷰의 제공을 통해 어떤 추천 상황에서든 사회적 실재감이 증대되나 유의한 차이를 보이지는 않았다.

Sentiment Analysis on 'HelloTalk' App Reviews Using NRC Emotion Lexicon and GoEmotions Dataset

  • Simay Akar;Yang Sok Kim;Mi Jin Noh
    • 스마트미디어저널
    • /
    • 제13권6호
    • /
    • pp.35-43
    • /
    • 2024
  • During the post-pandemic period, the interest in foreign language learning surged, leading to increased usage of language-learning apps. With the rising demand for these apps, analyzing app reviews becomes essential, as they provide valuable insights into user experiences and suggestions for improvement. This research focuses on extracting insights into users' opinions, sentiments, and overall satisfaction from reviews of HelloTalk, one of the most renowned language-learning apps. We employed topic modeling and emotion analysis approaches to analyze reviews collected from the Google Play Store. Several experiments were conducted to evaluate the performance of sentiment classification models with different settings. In addition, we identified dominant emotions and topics within the app reviews using feature importance analysis. The experimental results show that the Random Forest model with topics and emotions outperforms other approaches in accuracy, recall, and F1 score. The findings reveal that topics emphasizing language learning and community interactions, as well as the use of language learning tools and the learning experience, are prominent. Moreover, the emotions of 'admiration' and 'annoyance' emerge as significant factors across all models. This research highlights that incorporating emotion scores into the model and utilizing a broader range of emotion labels enhances model performance.

이요인 이론 기반 텍스트 마이닝을 통한 한·중 스마트홈 앱 서비스 사용자 평가 차이에 대한 연구: 신뢰성 중심 (A Study on the Evaluation Differences of Korean and Chinese Users in Smart Home App Services through Text Mining based on the Two-Factor Theory: Focus on Trustness)

  • 조욱녕;임규건
    • 한국IT서비스학회지
    • /
    • 제22권3호
    • /
    • pp.141-165
    • /
    • 2023
  • With the advent of the fourth industrial revolution, technologies such as the Internet of Things, artificial intelligence and cloud computing are developing rapidly, and smart homes enabled by these technologies are rapidly gaining popularity. To gain a competitive advantage in the global market, companies must understand the differences in consumer needs in different countries and cultures and develop corresponding business strategies. Therefore, this study conducts a comparative analysis of consumer reviews of smart homes in South Korea and China. This study collected online reviews of SmartThings, ThinQ, Msmarthom, and MiHome, the four most commonly used smart home apps in Korea and China. The collected review data is divided into satisfied reviews and dissatisfied reviews according to the ratings, and topics are extracted for each review dataset using LDA topic modeling. Next, the extracted topics are classified according to five evaluation factors of Perceived Usefulness, Reachability, Interoperability,Trustness, and Product Brand proposed by previous studies. Then, by comparing the importance of each evaluation factor in the two datasets of satisfaction and dissatisfaction, we find out the factors that affect consumer satisfaction and dissatisfaction, and compare the differences between users in Korea and China. We found Trustness and Reachability are very important factors. Finally, through language network analysis, the relationship between dissatisfied factors is analyzed from a more microscopic level, and improvement plans are proposed to the companies according to the analysis results.

온라인 상품평의 내용적 특성이 소비자의 인지된 유용성에 미치는 영향 (Impact of Semantic Characteristics on Perceived Helpfulness of Online Reviews)

  • 박윤주;김경재
    • 지능정보연구
    • /
    • 제23권3호
    • /
    • pp.29-44
    • /
    • 2017
  • 인터넷 상거래에서, 소비자들은 기존에 제품을 구매한 다른 사용자들이 작성한 상품평에 많은 영향을 받는다. 그러나, 상품평이 점차 축적되어감에 따라, 소비자들이 방대한 상품평을 일일이 확인하는데 많은 시간과 노력이 소요되고, 또한 무성의하게 작성된 상품평들은 오히려 소비자들의 불편을 초래하기도 한다. 이에, 본 연구는 온라인 상품평의 유용성에 영향을 미치는 요인들을 분석하여, 소비자들에게 실제로 도움이 될 수 있는 상품평을 선별적으로 제공하는 예측모형을 도출하는 것을 목적으로 한다. 이를 위해, 텍스트마이닝 기법을 사용하여, 상품평에 포함되어있는 다양한 언어적, 심리적, 지각적 요소들을 추출하였으며, 이러한 요소들 중에서 상품평의 유용성에 영향을 미치는 결정요인이 무엇인지 파악하였다. 특히, 경험재인 의류군과 탐색재인 전자제품군에 대한 상품평의 특성 및 유용성 결정요인이 상이할 수 있음을 고려하여, 제품군별로 상품평의 특성을 비교하고, 각각의 결정요인을 도출하였다. 본 연구에는 아마존닷컴(Amazon.com)의 의류군 상품평 7,498건과 전자제품군 상품평 106,962건이 사용되었다. 또한, 언어분석 소프트웨어인 LIWC(Linguistic Inquiry and Word Count)를 활용하여 상품평에 포함된 특징들을 추출하였고, 이후, 데이터마이닝 소프트웨어인 RapidMiner를 사용하여, 회귀분석을 통한, 결정요인 분석을 수행하였다. 본 연구결과, 제품에 대한 리뷰어의 평가가 높고, 상품평에 포함된 전체 단어 수가 많으며, 상품평의 내용에 지각적 과정이 많이 포함되어 있는 반면, 부정적 감정은 적게 포함된 상품평들이 두 제품 모두에서 유용하다고 인식되는 것을 알 수 있었다. 그 외, 의류군의 경우, 비교급 표현이 많고, 전문성 지수는 낮으며, 한 문장에 포함된 단어 수가 적은 간결한 상품평이 유용하다고 인식되고 있었으며, 전자제품의 경우, 전문성 지수가 높고, 분석적이며, 진솔한 표현이 많고, 인지적 과정과 긍정적 감정(PosEmo)이 많이 포함된 상품평이 유용하게 인식되고 있었다. 이러한 연구결과는 향후, 소비자들이 효과적으로 유용한 상품평들을 확인하는데 도움이 될 것으로 기대된다.

XAI 기법을 이용한 리뷰 유용성 예측 결과 설명에 관한 연구 (Explainable Artificial Intelligence Applied in Deep Learning for Review Helpfulness Prediction)

  • 류동엽;이흠철;김재경
    • 지능정보연구
    • /
    • 제29권2호
    • /
    • pp.35-56
    • /
    • 2023
  • 정보통신 기술의 발전에 따라 웹 사이트에는 수많은 리뷰가 지속적으로 게시되고 있다. 이로 인해 정보 과부하 문제가 발생하여 사용자들은 본인이 원하는 리뷰를 탐색하는데 어려움을 겪고 있다. 따라서, 이러한 문제를 해결하여 사용자에게 유용하고 신뢰성 있는 리뷰를 제공하기 위해 리뷰 유용성 예측에 관한 연구가 활발히 진행되고 있다. 기존 연구는 주로 리뷰에 포함된 특성을 기반으로 리뷰 유용성을 예측하였다. 그러나, 예측한 리뷰가 왜 유용한지 근거를 제시할 수 없다는 한계점이 존재한다. 따라서 본 연구는 이러한 한계점을 해결하기 위해 리뷰 유용성 예측 모델에 eXplainable Artificial Intelligence(XAI) 기법을 적용하는 방법론을 제안하였다. 본 연구는 Yelp.com에서 수집한 레스토랑 리뷰를 사용하여 리뷰 유용성 예측에 관한 연구에서 널리 사용되는 6개의 모델을 통해 예측 성능을 비교하였다. 그 다음, 예측 성능이 가장 우수한 모델에 XAI 기법을 적용하여 설명 가능한 리뷰 유용성 예측 모델을 제안하였다. 따라서 본 연구에서 제안한 방법론은 사용자의 구매 의사결정 과정에서 유용한 리뷰를 추천할 수 있는 동시에 해당 리뷰가 왜 유용한지에 대한 해석을 제공할 수 있다.

사용자 리뷰의 평가기준 별 이슈 식별 방법론: 호텔 리뷰 사이트를 중심으로 (Methodology for Identifying Issues of User Reviews from the Perspective of Evaluation Criteria: Focus on a Hotel Information Site)

  • 변성호;이동훈;김남규
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.23-43
    • /
    • 2016
  • 최근 IT기술의 발전에 따라 많은 사람들이 자신들의 여가활동에 대한 경험을 공유하고 있으며, 역으로 다른 사람들의 여가활동에 대한 경험을 참고하여 더 나은 여가활동을 누릴 수 있는 기회를 얻게 되었다. 이러한 현상은 영화, 숙박, 음식, 여행 등 여가활동 전반에 걸쳐 나타나고 있으며, 그 중심에는 여가활동에 대한 정보를 요약하여 제공하는 수많은 사이트가 있다. 대부분의 여가활동 정보 사이트는 각 상품에 대한 평균 평점뿐만 아니라 상세 리뷰를 제공함으로써, 해당 상품을 구매하고자 하는 잠재고객의 의사결정을 지원하고 있다. 하지만 기존 대부분의 사이트는 한 단계의 평가기준에 따라 평점과 리뷰를 제공하기 때문에, 각 평가기준을 구성하는 세부요소에 대한 특징과 평가기준 별 주요 이슈를 파악하기 위해서는 상당히 많은 수의 리뷰를 직접 읽어야 한다는 불편이 따른다. 즉 사용자는 자신이 중요한 것으로 생각하는 평가기준에 대한 조건을 파악하기 위해, 많은 수의 리뷰를 하나하나 읽어보는 과정에서 많은 시간과 노력을 소비하게 된다. 예를 들어 호텔의 접근성, 객실, 서비스, 음식 등 한 단계의 평가기준만을 사용하여 평점과 리뷰를 제공하는 사이트의 경우, 접근성 중 특히 지하철역과의 거리, 객실 중 특히 욕실의 상태를 살펴보고자 하는 사용자에게 필요한 정보를 충분히 제공하지 못하게 된다. 따라서 본 연구에서는 기존 여가활동 정보 사이트의 한계, 즉 평가기준별로 입력된 리뷰를 신뢰하기 어렵다는 점과 평가기준을 구성하고 있는 세부 내용을 파악하기 어렵다는 점을 극복하기 위한 방안을 제시하고자 한다. 본 연구에서 제안하는 방법론은 사용자가 별도의 구분 없이 입력한 리뷰를 그 내용에 따라 평가기준별로 자동 분류하고, 각 평가 기준 별 주요 이슈를 요약하여 제공한다. 제안 방법론은 최근 텍스트 분석에 활발하게 사용되고 있는 토픽 모델링(Topic Modeling)에 기반을 두고 있으며, 각 리뷰를 하나의 문서 단위로 사용하는 것이 아니라 리뷰를 문장 단위로 끊어 개별 리뷰 유닛(Review Unit)으로 분해한 뒤, 평가기준별로 리뷰 유닛을 재구성하여 분석한다는 측면에서 기존의 토픽 모델링 기반 연구와 큰 차이가 있다고 할 수 있다. 본 논문에서는 제안 방법론을 실제 호텔 정보 사이트에서 수집한 423건의 리뷰 문서에 적용하여 6가지 평가기준에 대해 총 4,860건의 리뷰 유닛을 재구성하고, 이에 대한 분석 결과를 소개함으로써 제안 방법론의 유용성을 간접적으로 보인다.

사용자 영화평의 감정어휘 분석을 통한 영화검색시스템 (Movie Retrieval System by Analyzing Sentimental Keyword from User's Movie Reviews)

  • 오성호;강신재
    • 한국산학기술학회논문지
    • /
    • 제14권3호
    • /
    • pp.1422-1427
    • /
    • 2013
  • 본 논문에서는 사용자가 작성한 영화평으로부터 추출한 감정어휘에 기반한 영화검색시스템을 제안한다. 먼저, 사용자의 영화평을 형태소분석하고 수작업으로 감정어휘사전을 구축한다. 그 다음, 검색의 대상이 되는 영화별로 감정어휘사전에 포함되어 있는 감정어휘들의 가중치를 TF-IDF를 이용하여 계산한다. 이러한 결과를 이용하여 제안 시스템은 영화의 감정 분류를 결정하고, 랭킹하여 사용자에게 보여주게 된다. 사용자들은 영화평을 읽지 않고도, 감정 어휘로 구성된 질의어를 입력하여 원하는 영화를 찾을 수 있게 된다.