• Title/Summary/Keyword: Users Content Creators

Search Result 37, Processing Time 0.021 seconds

Video Content Editing System for Senior Video Creator based on Video Analysis Techniques (영상분석 기술을 활용한 시니어용 동영상 편집 시스템)

  • Jang, Dalwon;Lee, Jaewon;Lee, JongSeol
    • Journal of Broadcast Engineering
    • /
    • v.27 no.4
    • /
    • pp.499-510
    • /
    • 2022
  • This paper introduces a video editing system for senior creator who is not familiar to video editing. Based on video analysis techniques, it provide various information and delete unwanted shot. The system detects shot boundaries based on RNN(Recurrent Neural Network), and it determines the deletion of video shots. The shots can be deleted using shot-level significance, which is computed by detecting focused area. It is possible to delete unfocused shots or motion-blurred shots using the significance. The system detects object and face, and extract the information of emotion, age, and gender from face image. Users can create video contents using the information. Decorating tools are also prepared, and in the tools, the preferred design, which is determined from user history, places in the front of the design element list. With the video editing system, senior creators can make their own video contents easily and quickly.

Social Tagging-based Recommendation Platform for Patented Technology Transfer (특허의 기술이전 활성화를 위한 소셜 태깅기반 지적재산권 추천플랫폼)

  • Park, Yoon-Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.53-77
    • /
    • 2015
  • Korea has witnessed an increasing number of domestic patent applications, but a majority of them are not utilized to their maximum potential but end up becoming obsolete. According to the 2012 National Congress' Inspection of Administration, about 73% of patents possessed by universities and public-funded research institutions failed to lead to creating social values, but remain latent. One of the main problem of this issue is that patent creators such as individual researcher, university, or research institution lack abilities to commercialize their patents into viable businesses with those enterprises that are in need of them. Also, for enterprises side, it is hard to find the appropriate patents by searching keywords on all such occasions. This system proposes a patent recommendation system that can identify and recommend intellectual rights appropriate to users' interested fields among a rapidly accumulating number of patent assets in a more easy and efficient manner. The proposed system extracts core contents and technology sectors from the existing pool of patents, and combines it with secondary social knowledge, which derives from tags information created by users, in order to find the best patents recommended for users. That is to say, in an early stage where there is no accumulated tag information, the recommendation is done by utilizing content characteristics, which are identified through an analysis of key words contained in such parameters as 'Title of Invention' and 'Claim' among the various patent attributes. In order to do this, the suggested system extracts only nouns from patents and assigns a weight to each noun according to the importance of it in all patents by performing TF-IDF analysis. After that, it finds patents which have similar weights with preferred patents by a user. In this paper, this similarity is called a "Domain Similarity". Next, the suggested system extract technology sector's characteristics from patent document by analyzing the international technology classification code (International Patent Classification, IPC). Every patents have more than one IPC, and each user can attach more than one tag to the patents they like. Thus, each user has a set of IPC codes included in tagged patents. The suggested system manages this IPC set to analyze technology preference of each user and find the well-fitted patents for them. In order to do this, the suggeted system calcuates a 'Technology_Similarity' between a set of IPC codes and IPC codes contained in all other patents. After that, when the tag information of multiple users are accumulated, the system expands the recommendations in consideration of other users' social tag information relating to the patent that is tagged by a concerned user. The similarity between tag information of perferred 'patents by user and other patents are called a 'Social Simialrity' in this paper. Lastly, a 'Total Similarity' are calculated by adding these three differenent similarites and patents having the highest 'Total Similarity' are recommended to each user. The suggested system are applied to a total of 1,638 korean patents obtained from the Korea Industrial Property Rights Information Service (KIPRIS) run by the Korea Intellectual Property Office. However, since this original dataset does not include tag information, we create virtual tag information and utilized this to construct the semi-virtual dataset. The proposed recommendation algorithm was implemented with JAVA, a computer programming language, and a prototype graphic user interface was also designed for this study. As the proposed system did not have dependent variables and uses virtual data, it is impossible to verify the recommendation system with a statistical method. Therefore, the study uses a scenario test method to verify the operational feasibility and recommendation effectiveness of the system. The results of this study are expected to improve the possibility of matching promising patents with the best suitable businesses. It is assumed that users' experiential knowledge can be accumulated, managed, and utilized in the As-Is patent system, which currently only manages standardized patent information.

Effects of Live Commerce and Show Host Attributes on Purchase Intention: Including the Mediating Effects of Content Flow (라이브 커머스 및 쇼 호스트 특성이 구매의도에 미치는 영향: 콘텐츠 몰입의 매개효과를 포함하여)

  • Kim, Sung Jong;Heo, Chul Moo
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.16 no.3
    • /
    • pp.177-191
    • /
    • 2021
  • Due to the development of mobile devices and streaming technology, many changes in consumption patterns have appeared. In addition, social impact is becoming an era of non-face-to-face consumption due to the panthermic environment of COVID-19. Accordingly, in line with the non-face-to-face consumption trend, we focused on the importance of live commerce, which is emerging as a new distribution channel, and tried to investigate the causal relationship that the characteristics of live commerce and show hosts have on purchase intention. The respondents of this study were 235 general adults of live commerce users. Interaction, economics, entertainment as the characteristics of live commerce and attractiveness, professionality, and awareness as the characteristics of show hosts were set as independent variables. Purchase intention was set as the dependent variable, and content flow was set as the mediating variable. As a result of the study, it was found that the characteristics of live commerce such as Interaction, economics, entertainment, and the characteristics of show hosts such as attractiveness, professionality, and awareness all had a positive (+) significant effect on purchase intention. The impact was shown in the following order: entertainment of live commerce, awareness, attractiveness, professionality of show hosts, economics, interaction of live commerce. In addition, the results of the mediating effect of content flow on purchase intention are as follows. Content flow was found to play a mediating role between interaction, entertainment, attractiveness, professionality, awareness and purchase intention. On the other hand, economics was analyzed to have no mediating effect. The implications of this study are as follows. Companies and show hosts that sell products in live commerce should sell products that can inspire consumers rather than simply sell products. In addition, it is considered that content that provides entertainment and attractions gives pleasure to consumers. If not only a well-recognized show host, but also people with high recognition in various fields such as influencers and creators, become show hosts, consumers' content flow and purchase intentions will increase. And vendors must offer interesting content development and reasonable prices. Show hosts need to focus on active communication with consumers.

An Analysis of the Comparative Importance of Systematic Attributes for Developing an Intelligent Online News Recommendation System: Focusing on the PWYW Payment Model (지능형 온라인 뉴스 추천시스템 개발을 위한 체계적 속성간 상대적 중요성 분석: PWYW 지불모델을 중심으로)

  • Lee, Hyoung-Joo;Chung, Nuree;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.75-100
    • /
    • 2018
  • Mobile devices have become an important channel for news content usage in our daily life. However, online news content readers' resistance to online news monetization is more serious than other digital content businesses, such as webtoons, music sources, videos, and games. Since major portal sites distribute online news content free of charge to increase their traffics, customers have been accustomed to free news content; hence this makes online news providers more difficult to switch their policies on business models (i.e., monetization policy). As a result, most online news providers are highly dependent on the advertising business model, which can lead to increasing number of false, exaggerated, or sensational advertisements inside the news website to maximize their advertising revenue. To reduce this advertising dependencies, many online news providers had attempted to switch their 'free' readers to 'paid' users, but most of them failed. However, recently, some online news media have been successfully applying the Pay-What-You-Want (PWYW) payment model, which allows readers to voluntarily pay fees for their favorite news content. These successful cases shed some lights to the managers of online news content provider regarding that the PWYW model can serve as an alternative business model. In this study, therefore, we collected 379 online news articles from Ohmynews.com that has been successfully employing the PWYW model, and analyzed the comparative importance of systematic attributes of online news content on readers' voluntary payment. More specifically, we derived the six systematic attributes (i.e., Type of Article Title, Image Stimulation, Article Readability, Article Type, Dominant Emotion, and Article-Image Similarity) and three or four levels within each attribute based on previous studies. Then, we conducted content analysis to measure five attributes except Article Readability attribute, measured by Flesch readability score. Before conducting main content analysis, the face reliabilities of chosen attributes were measured by three doctoral level researchers with 37 sample articles, and inter-coder reliabilities of the three coders were verified. Then, the main content analysis was conducted for two months from March 2017 with 379 online news articles. All 379 articles were reviewed by the same three coders, and 65 articles that showed inconsistency among coders were excluded before employing conjoint analysis. Finally, we examined the comparative importance of those six systematic attributes (Study 1), and levels within each of the six attributes (Study 2) through conjoint analysis with 314 online news articles. From the results of conjoint analysis, we found that Article Readability, Article-Image Similarity, and Type of Article Title are the most significant factors affecting online news readers' voluntary payment. First, it can be interpreted that if the level of readability of an online news article is in line with the readers' level of readership, the readers will voluntarily pay more. Second, the similarity between the content of the article and the image within it enables the readers to increase the information acceptance and to transmit the message of the article more effectively. Third, readers expect that the article title would reveal the content of the article, and the expectation influences the understanding and satisfaction of the article. Therefore, it is necessary to write an article with an appropriate readability level, and use images and title well matched with the content to make readers voluntarily pay more. We also examined the comparative importance of levels within each attribute in more details. Based on findings of two studies, two major and nine minor propositions are suggested for future empirical research. This study has academic implications in that it is one of the first studies applying both content analysis and conjoint analysis together to examine readers' voluntary payment behavior, rather than their intention to pay. In addition, online news content creators, providers, and managers could find some practical insights from this research in terms of how they should produce news content to make readers voluntarily pay more for their online news content.

User-based Theories and Practices on Virtual Reality (가상현실에 관한 사용자 관점의 이론과 실제)

  • Chung, Dong-Hun
    • Informatization Policy
    • /
    • v.24 no.1
    • /
    • pp.3-29
    • /
    • 2017
  • The purpose of this research is to understand immersive media such as virtual reality, augmented reality, mixed reality, 360-degree videos etc. from the perspective of user-based approach. 3D videos were once expected as the next-generation industry, but soon it further evolved into UHD and are now followed by immersive media represented by virtual reality. As the virtual reality plays an important role, the current research tries to bring up implications that can be applied to the industrial field along with academic understanding through six theoretical approaches related to virtual reality such as media richness, interactivity, presence, body-ownership, user experience, and visual perception. These six theories were used in immersive media studies such as 3D videos. Media richness and interactivity are the main factors forming positive or negative attitude, presence explains why users are immersed, user experience accounts for total psychological reaction, and visual perception explains how complex the experience of seeing is. Especially, although there is less media research applied, the body-ownership is likely to be not only used in virtual reality research, but immersive media research. The user-based theories related to virtual reality will provide various implications for immersive media researchers as well as hardware and content creators of virtual reality.

Research on Archive Opening and Sharing Projects of Korean Terrestrial Broadcasters and External Users of Shared Archives : Focusing on the Case of the 5.18 Footage Video Sharing Project 〈May Story(Owol-Iyagi)〉 Contest Organized by KBS (국내 지상파 방송사의 아카이브 개방·공유 사업과 아카이브 이용자 연구 KBS 5.18 아카이브 시민공유 프로젝트 <5월이야기> 공모전 사례를 중심으로)

  • Choi, Hyojin
    • The Korean Journal of Archival Studies
    • /
    • no.78
    • /
    • pp.197-249
    • /
    • 2023
  • This paper focus on the demand for broadcast and video archive contents by users outside broadcasters as the archive openness and sharing projects of terrestrial broadcasters have become more active in recent years. In the process of creating works using broadcasters' released video footage, the study examined the criteria by which video footage is selected and the methods and processes utilized for editing. To this end, the study analyzed the the case of the 5.18 footage video sharing project 〈May Story(Owol-Iyagi)〉 contest organized by KBS in 2022, in which KBS released its footage about the May 18 Democratic Uprising and invited external users to create new content using them. Analyzing the works that were selected as the winners of the contest, the research conducts in-depth interviews with the creators of each work. As a result, the following points are identified. Among the submitted works, many works deal with the direct or indirect experience of the May 18 Democratic Uprising and focus on the impact of this historical event on individuals and our current society. The study also examined the ways in which broadcasters' footage is used in secondary works. We found ways to use video as a means to share historical events, or to present video as evidence or metaphor. It is found that the need for broadcasters to provide a wider range of public video materials such as the May 18 Democratic Uprising, describing more metadata including copyright information before releasing selected footage, ensuring high-definition and high-fidelity videos that can be used for editing, and strengthening streaming or downloading functions for user friendliness. Through this, the study explores the future direction of broadcasters' video data openness and sharing business, and confirms that broadcasters' archival projects can be an alternative to fulfill public responsibilities such as strengthening social integration between regions, generations, and classes through moving images.

  • PDF

Color Analyses on Digital Photos Using Machine Learning and KSCA - Focusing on Korean Natural Daytime/nighttime Scenery - (머신러닝과 KSCA를 활용한 디지털 사진의 색 분석 -한국 자연 풍경 낮과 밤 사진을 중심으로-)

  • Gwon, Huieun;KOO, Ja Joon
    • Trans-
    • /
    • v.12
    • /
    • pp.51-79
    • /
    • 2022
  • This study investigates the methods for deriving colors which can serve as a reference to users such as designers and or contents creators who search for online images from the web portal sites using specific words for color planning and more. Two experiments were conducted in order to accomplish this. Digital scenery photos within the geographic scope of Korea were downloaded from web portal sites, and those photos were studied to find out what colors were used to describe daytime and nighttime. Machine learning was used as the study methodology to classify colors in daytime and nighttime, and KSCA was used to derive the color frequency of daytime and nighttime photos and to compare and analyze the two results. The results of classifying the colors of daytime and nighttime photos using machine learning show that, when classifying the colors by 51~100%, the area of daytime colors was approximately 2.45 times greater than that of nighttime colors. The colors of the daytime class were distributed by brightness with white as its center, while that of the nighttime class was distributed with black as its center. Colors that accounted for over 70% of the daytime class were 647, those over 70% of the nighttime class were 252, and the rest (31-69%) were 101. The number of colors in the middle area was low, while other colors were classified relatively clearly into day and night. The resulting color distributions in the daytime and nighttime classes were able to provide the borderline color values of the two classes that are classified by brightness. As a result of analyzing the frequency of digital photos using KSCA, colors around yellow were expressed in generally bright daytime photos, while colors around blue value were expressed in dark night photos. For frequency of daytime photos, colors on the upper 40% had low chroma, almost being achromatic. Also, colors that are close to white and black showed the highest frequency, indicating a large difference in brightness. Meanwhile, for colors with frequency from top 5 to 10, yellow green was expressed darkly, and navy blue was expressed brightly, partially composing a complex harmony. When examining the color band, various colors, brightness, and chroma including light blue, achromatic colors, and warm colors were shown, failing to compose a generally harmonious arrangement of colors. For the frequency of nighttime photos, colors in approximately the upper 50% are dark colors with a brightness value of 2 (Munsell signal). In comparison, the brightness of middle frequency (50-80%) is relatively higher (brightness values of 3-4), and the brightness difference of various colors was large in the lower 20%. Colors that are not cool colors could be found intermittently in the lower 8% of frequency. When examining the color band, there was a general harmonious arrangement of colors centered on navy blue. As the results of conducting the experiment using two methods in this study, machine learning could classify colors into two or more classes, and could evaluate how close an image was with certain colors to a certain class. This method cannot be used if an image cannot be classified into a certain class. The result of such color distribution would serve as a reference when determining how close a certain color is to one of the two classes when the color is used as a dominant color in the base or background color of a certain design. Also, when dividing the analyzed images into several classes, even colors that have not been used in the analyzed image can be determined to find out how close they are to a certain class according to the color distribution properties of each class. Nevertheless, the results cannot be used to find out whether a specific color was used in the class and by how much it was used. To investigate such an issue, frequency analysis was conducted using KSCA. The color frequency could be measured within the range of images used in the experiment. The resulting values of color distribution and frequency from this study would serve as references for color planning of digital design regarding natural scenery in the geographic scope of Korea. Also, the two experiments are meaningful attempts for searching the methods for deriving colors that can be a useful reference among numerous images for content creator users of the relevant field.