Journal of Korea Society of Digital Industry and Information Management
/
v.11
no.1
/
pp.111-120
/
2015
The christian communities have been maintained and spreaded based on the great foundation of the holy bible. The printing and publishing technology made the holy bible popular at the end of the middle age. Namely, because of this remarkable development, the Bible have been became the best seller for centuries. Since the smart phone users have been growing, the number of people use the Bible Application have been increased. In this circumstance, the interface becomes a crucial element in the Age of Digital Media. Thus, developers have to regard the user's convenient. The user's characteristic is the important point to develop applications. This study is focusing on a particular using of the Bible, and how the using characteristic affects on application's UI. For this study, five bible applications reflecting particular using characteristics are chosen and compared in terms of function of services and elements of UI. Form this comparison and analysis, this study deduces the pattern of UI considering particular using characteristics such as patterns of reading, recording, sharing, and searching the bible. This study would be useful data for publications formed into applications and setting the UI which reflected the using characteristics be better user-centered.
Frequent pattern mining, which is one of the major areas actively studied in data mining, is a method for extracting useful pattern information hidden from large data sets or databases. Moreover, frequent pattern mining approaches have been actively employed in a variety of application fields because the results obtained from them can allow us to analyze various, important characteristics within databases more easily and automatically. However, traditional frequent pattern mining methods, which simply extract all of the possible frequent patterns such that each of their support values is not smaller than a user-given minimum support threshold, have the following problems. First, traditional approaches have to generate a numerous number of patterns according to the features of a given database and the degree of threshold settings, and the number can also increase in geometrical progression. In addition, such works also cause waste of runtime and memory resources. Furthermore, the pattern results excessively generated from the methods also lead to troubles of pattern analysis for the mining results. In order to solve such issues of previous traditional frequent pattern mining approaches, the concept of representative pattern mining and its various related works have been proposed. In contrast to the traditional ones that find all the possible frequent patterns from databases, representative pattern mining approaches selectively extract a smaller number of patterns that represent general frequent patterns. In this paper, we describe details and characteristics of pattern condensing techniques that consider the maximality or closure property of generated frequent patterns, and conduct comparison and analysis for the techniques. Given a frequent pattern, satisfying the maximality for the pattern signifies that all of the possible super sets of the pattern must have smaller support values than a user-specific minimum support threshold; meanwhile, satisfying the closure property for the pattern means that there is no superset of which the support is equal to that of the pattern with respect to all the possible super sets. By mining maximal frequent patterns or closed frequent ones, we can achieve effective pattern compression and also perform mining operations with much smaller time and space resources. In addition, compressed patterns can be converted into the original frequent pattern forms again if necessary; especially, the closed frequent pattern notation has the ability to convert representative patterns into the original ones again without any information loss. That is, we can obtain a complete set of original frequent patterns from closed frequent ones. Although the maximal frequent pattern notation does not guarantee a complete recovery rate in the process of pattern conversion, it has an advantage that can extract a smaller number of representative patterns more quickly compared to the closed frequent pattern notation. In this paper, we show the performance results and characteristics of the aforementioned techniques in terms of pattern generation, runtime, and memory usage by conducting performance evaluation with respect to various real data sets collected from the real world. For more exact comparison, we also employ the algorithms implementing these techniques on the same platform and Implementation level.
Journal of Korean Library and Information Science Society
/
v.43
no.1
/
pp.221-239
/
2012
The information that has been created according to the complex environment and usage pattern of library user can provide context-aware information service through knowledge structuralization on whether it is a suitable situation for user. Accordingly, the development of a context model for defining the various contexts of library user and for the structuralization of interrelated context information is an essential requirement. This study examined the context concept and context modeling, and utilizing the concept of Activity Theory by Engestrom, the activity model of library user was designed as 1) subject, 2) object, 3) tools, 4) divison of labor, 5) community, and 6) rules. In addition, for the purpose of analyzing the context of library user, activity information was tracked to utilize the Shadow Tracking for observing and recording their forms, and the methodology of CAbAT (Context Analysis based on Activity Theory) was utilized for the collected activity information to analyze the user context model.
Lee, Taek;Kim, Do-Hoon;Lee, Myong-Rak;In, Hoh Peter
Journal of KIISE:Computing Practices and Letters
/
v.16
no.12
/
pp.1264-1268
/
2010
In this paper, we propose a behavior pattern analysis method for users tasking on hands-on security exercise missions. By analysing and evaluating the observed user behavior data, the proposed method discovers some significant patterns able to contribute mission successes or fails. A Markov chain modeling approach and algorithm is used to automate the whole analysis process. How to apply and understand our proposed method is briefly shown through a case study, "network service configurations for secure web service operation".
Abnormal data in the manufacturing process makes it difficult to find useful information that can be applied in data management for the manufacturing industry. It causes various problems in the daily process of production. An issue from the abnormal data can be handled by our method that uses big data and visualization. Visualization is a new technology that transforms data representation into a two-dimensional representation. Nowadays, many newly developed technologies provide data analysis, algorithm, optimization, and high efficiency, and they meet user requirements. We propose combined production of the data visualization approach that uses integrative visualization of sources of abnormal pattern analysis results. The perceived idea of the proposed approach can solve the problem as it also works for big data. It can also improve the performance and understanding by using visualization and solving issues that occur in the manufacturing process with a calendar heat map.
Journal of the Korean Society for information Management
/
v.27
no.4
/
pp.109-130
/
2010
The purpose of this study is to identify th patterns in the news reporters' information seeking behaviors by observing their web activities. For this purpose, transaction logs collected from 23 news reporters were analyzed. Web tracking software was installed to collect the data from their PCs, and a total of 39,860 web logs were collected in two weeks. Start and end pattern of sessions, transitional pattern by step, sequence rule model was analyzed and the pattern of Internet use was compared with the general public. the analysis of pattern derived a web information seeking behavior modes that consists of four types of behaviors: fact-checking browsing, fact-checking search, investigative browsing and investigative search.
In this paper, we propose a new idea to evaluate the prediction accuracy of user's preference generated by memory-based collaborative filtering algorithm before prediction process in the recommender system. Our analysis results show the possibility of a pre-evaluation before the prediction process of users' preference of item's transaction on the web. Classification functions proposed in this study generate a user's rating pattern under certain conditions. In this research, we test whether classification functions select users who have lower prediction or higher prediction performance under collaborative filtering recommendation approach. The statistical test results will be based on the differences of the prediction accuracy of each user group which are classified by classification functions using the generative probability of specific rating. The characteristics of rating patterns of classified users will also be presented.
Journal of the Korean Society of Clothing and Textiles
/
v.44
no.2
/
pp.369-383
/
2020
This study proposes a method to effectively teaching technic for pattern development and virtual garment manufacturing by adopting the K-MOOC platform for the Apparel Pattern CAD curriculum. According to K-MOOC guidelines, Apparel Pattern CAD curriculum were developed and presented through the K-MOOC platform. A questionnaire survey was utilized to evaluate K-MOOC platform features in terms of learner satisfaction when adopting the 5-point Likert scale. Questionnaire survey participants included 52 college students. The result of the survey found that most of the attributes of the K-MOOC platform were highly rated in terms of interaction and learning effectiveness. The user interface of the K-MOOC platform were shown to be satisfactory in terms of usability. Participants gave a positive assessment of the benefits of online lectures when comparing online and offline lectures. In particular, the preference for online lectures in computer-related courses such as CAD was higher than the offline. It was concluded that the Apparel Pattern CAD curriculum based on the K-MOOC platform was effective and satisfactory for learners in various aspects.
Kim, Jeongmin;Choi, Seunghyun;Do, Myungsik;Han, Daeseok
International Journal of Highway Engineering
/
v.18
no.3
/
pp.47-57
/
2016
PURPOSES : This study aims to examine the differences between the existing traffic demand forecasting method and the traffic demand forecasting method considering future regional development plans and new road construction and expansion plans using a four-step traffic demand forecast for a more objective and sophisticated national highway maintenance. This study ultimately aims to present future pavement deterioration and budget forecasting planning based on the examination. METHODS : This study used the latest data offered by the Korea Transport Data Base (KTDB) as the basic data for demand forecast. The analysis scope was set using the Daejeon Metropolitan City's O/D and network data. This study used a traffic demand program called TransCad, and performed a traffic assignment by vehicle type through the application of a user equilibrium-based multi-class assignment technique. This study forecasted future traffic demand by verifying whether or not a realistic traffic pattern was expressed similarly by undertaking a calibration process. This study performed a life cycle cost analysis based on traffic using the forecasted future demand or existing past pattern, or by assuming the constant traffic demand. The maintenance criteria were decided according to equivalent single axle loads (ESAL). The maintenance period in the concerned section was calculated in this study. This study also computed the maintenance costs using a construction method by applying the maintenance criteria considering the ESAL. The road user costs were calculated by using the user cost calculation logic applied to the Korean Pavement Management System, which is the existing study outcome. RESULTS : This study ascertained that the increase and decrease of traffic occurred in the concerned section according to the future development plans. Furthermore, there were differences from demand forecasting that did not consider the development plans. Realistic and accurate demand forecasting supported an optimized decision making that efficiently assigns maintenance costs, and can be used as very important basic information for maintenance decision making. CONCLUSIONS : Therefore, decision making for a more efficient and sophisticated road management than the method assuming future traffic can be expected to be the same as the existing pattern or steady traffic demand. The reflection of a reliable forecasting of the future traffic demand to life cycle cost analysis (LCCA) can be a very vital factor because many studies are generally performed without considering the future traffic demand or with an analysis through setting a scenario upon LCCA within a pavement management system.
Journal of the Korean Operations Research and Management Science Society
/
v.27
no.3
/
pp.59-74
/
2002
This study investigates two basic operations of mobility management of PCNs (Personal Communication Networks), i.e., the location update and the paging of the mobile terminal. From the realistic consideration that a user either moves through several cells consecutively or stays in a cell with long time, we model the mobility pattern by introducing two types of CRT (Cell Residence Time). Mobility patterns of the mobile terminal are classified Into various ways by using the ratios of two types of CRT. Cost analysis is performed for distance-based and movement-based location update schemes combined with blanket polling paging and selective paging scheme. It is demonstrated that in a certain condition of mobility pattern and call arrival pattern, 2-state CRT model produces different optimal threshold and so, is more effective than IID ( Independently-Identically-Distributed) CRT model. An analytical model for the new CRT model is compact and easily extendable to the other location update schemes.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.