• 제목/요약/키워드: User Matching

검색결과 406건 처리시간 0.028초

Implementation of Subsequence Mapping Method for Sequential Pattern Mining

  • Trang Nguyen Thu;Lee Bum-Ju;Lee Heon-Gyu;Park Jeong-Seok;Ryu Keun-Ho
    • 대한원격탐사학회지
    • /
    • 제22권5호
    • /
    • pp.457-462
    • /
    • 2006
  • Sequential Pattern Mining is the mining approach which addresses the problem of discovering the existent maximal frequent sequences in a given databases. In the daily and scientific life, sequential data are available and used everywhere based on their representative forms as text, weather data, satellite data streams, business transactions, telecommunications records, experimental runs, DNA sequences, histories of medical records, etc. Discovering sequential patterns can assist user or scientist on predicting coming activities, interpreting recurring phenomena or extracting similarities. For the sake of that purpose, the core of sequential pattern mining is finding the frequent sequence which is contained frequently in all data sequences. Beside the discovery of frequent itemsets, sequential pattern mining requires the arrangement of those itemsets in sequences and the discovery of which of those are frequent. So before mining sequences, the main task is checking if one sequence is a subsequence of another sequence in the database. In this paper, we implement the subsequence matching method as the preprocessing step for sequential pattern mining. Matched sequences in our implementation are the normalized sequences as the form of number chain. The result which is given by this method is the review of matching information between input mapped sequences.

소비자의 심미적 선호도에서 디자이너의 인지차이에 대한 연구 - 제품 CMF를 중심으로 - (A Study of Designers' Cognitive Differences in Consumers' Aesthetic Preferences - Focus on Product CMF -)

  • 왕류풍;김치용
    • 한국멀티미디어학회논문지
    • /
    • 제24권4호
    • /
    • pp.619-627
    • /
    • 2021
  • With growing competition in the market, more product differentiation in visual perception is needed to enhance competitive power of products. The purpose of this paper is to have a research on designer's cognitive differences in aesthetic preferences of female consumers in product CMF design, and the deviation result in different female consumer groups will be obtained based on collected data of CMF design preferences of different female consumer groups. The research method adopted is to conduct matching experiment with professional products designers as participant to test the matching through correlation analysis between designers' cognition of female consumers and their preferences and female consumer preferences on the basis of the constructed typical user roles of female consumers. The results of the research show the correlation between designers' understanding of female consumer groups and their own real needs, and the surface processing of product surface decoration is the highest aesthetic preference of female consumer groups. The research provides reference for product design industry and designers of small and medium-sized enterprises who have substantial difficulty in surface design analysis.

A Study on NaverZ's Metaverse Platform Scaling Strategy

  • Song, Minzheong
    • International journal of advanced smart convergence
    • /
    • 제11권3호
    • /
    • pp.132-141
    • /
    • 2022
  • We look at the rocket life stages of NaverZ's metaverse platform scaling and investigate the ignition and scale-up stage of its metaverse platform brand, Zepeto based on the Rocket Model (RM). The results are derived as follows: Firstly, NaverZ shows the event strategy by collaborating with K-pops, the piggybacking strategy by utilizing other SNSs, and the VIP strategy by investing in game and entertainment content genres in the 'attract' function. In the second 'match' function, based on the matching rule of Zepeto, the users can generate their own characters and "World" with Zepeto Studio. However, for strengthening the matching quality, NaverZ is investing in the artificial intelligence (AI) based companies consistently. In the 'connect' function, NaverZ's maximization of the positive interaction is possible by inducing feed activities in Zepeto & other SNSs and by uploading attractive content for viral effects in the ignition. For facilitating this, NaverZ expands the scale to other continents like Southeast Asia and Middle East with the localization strategy inclusive investment. Lastly, in the 'transact' function, based on three monetization experiments like Coin & ZEM, user generated content (UGC) fee, and advertising revenue in the ignition, NaverZ starts to invest in NFT platforms and abroad blockchain companies.

Distributed Matching Algorithms for Spectrum Access: A Comparative Study and Further Enhancements

  • Ali, Bakhtiar;Zamir, Nida;Ng, Soon Xin;Butt, Muhammad Fasih Uddin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권4호
    • /
    • pp.1594-1617
    • /
    • 2018
  • In this paper, we consider a spectrum access scenario which consists of two groups of users, namely Primary Users (PUs) and Secondary Users (SUs) in Cooperative Cognitive Radio Networks (CCRNs). SUs cooperatively relay PUs messages based on Amplify-and-Forward (AF) and Decode-and-Forward (DF) cooperative techniques, in exchange for accessing some of the spectrum for their secondary communications. From the literatures, we found that the Conventional Distributed Algorithm (CDA) and Pragmatic Distributed Algorithm (PDA) aim to maximize the PU sum-rate resulting in a lower sum-rate for the SU. In this contribution, we have investigated a suit of distributed matching algorithms. More specifically, we investigated SU-based CDA (CDA-SU) and SU-based PDA (PDA-SU) that maximize the SU sum-rate. We have also proposed the All User-based PDA (PDA-ALL), for maximizing the sum-rates of both PU and SU groups. A comparative study of CDA, PDA, CDA-SU, PDA-SU and PDA-ALL is conducted, and the strength of each scheme is highlighted. Different schemes may be suitable for different applications. All schemes are investigated under the idealistic scenario involving perfect coding and perfect modulation, as well as under practical scenario involving actual coding and actual modulation. Explicitly, our practical scenario considers the adaptive coded modulation based DF schemes for transmission flexibility and efficiency. More specifically, we have considered the Self-Concatenated Convolutional Code (SECCC), which exhibits low complexity, since it invokes only a single encoder and a single decoder. Furthermore, puncturing has been employed for enhancing the bandwidth efficiency of SECCC. As another enhancement, physical layer security has been applied to our system by introducing a unique Advanced Encryption Standard (AES) based puncturing to our SECCC scheme.

온톨로지 기반 정보제공 시스템 (Ontology-Based Adaptive Information Providing System)

  • 손영태;이상근;이지혜;김재관;한요섭;박면웅
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.596-600
    • /
    • 2009
  • Web 2.0의 사용자 참여, 개방, 공유 중심의 인터넷 환경은 대량의 다양한 정보가 생성, 공유되고 있으며, 효율적인 검색기법만으로는 원하는 시점에 필요한 정보를 효과적으로 제공받지 못하는 상태이므로, 정보검색이나 필터링 과정에 추가적인 기법들이 요구되고 있다. 또한, 유비쿼터스 환경이 구축됨에 따라 정보검색은 장소와 시간에 관계없이 수행되며, 상황과 환경에 능동적이며 실시간적인 응답을 요구받고 있으므로. 정보검색이나 추천과정에서는 사용자의 상황과 요구조건에 적합한 정보를 결정하는 효율적인 리소스 매칭기법이 필수적이다. 본 논문에서는 연구개발을 주 업무로 하는 임의조직을 대상으로 구성원들의 정보활동을 효과적으로 지원하는 정보서비스 시스템의 개발에 관련된 방법론으로 대상조직의 소프트웨어적 분석과 구성의 정의, 정보와 지식의 표현과 관리, 리소스 매칭기법 등을 기술하고, 이를 응용한 정보서비스 시스템을 구현하여 타당성을 보이고자 한다.

  • PDF

Performance Improvement of Offline Phase for Indoor Positioning Systems Using Asus Xtion and Smartphone Sensors

  • Yeh, Sheng-Cheng;Chiou, Yih-Shyh;Chang, Huan;Hsu, Wang-Hsin;Liu, Shiau-Huang;Tsai, Fuan
    • Journal of Communications and Networks
    • /
    • 제18권5호
    • /
    • pp.837-845
    • /
    • 2016
  • Providing a customer with tailored location-based services (LBSs) is a fundamental problem. For location-estimation techniques with radio-based measurements, LBS applications are widely available for mobile devices (MDs), such as smartphones, enabling users to run multi-task applications. LBS information not only enables obtaining the current location of an MD but also provides real-time push-pull communication service. For indoor environments, localization technologies based on radio frequency (RF) pattern-matching approaches are accurate and commonly used. However, to survey radio information for pattern-matching approaches, a considerable amount of time and work is spent in indoor environments. Consequently, in order to reduce the system-deployment cost and computing complexity, this article proposes an indoor positioning approach, which involves using Asus Xtion to facilitate capturing RF signals during an offline site survey. The depth information obtained using Asus Xtion is utilized to estimate the locations and predict the received signal strength (RF information) at uncertain locations. The proposed approach effectively reduces not only the time and work costs but also the computing complexity involved in determining the orientation and RF during the online positioning phase by estimating the user's location by using a smartphone. The experimental results demonstrated that more than 78% of time was saved, and the number of samples acquired using the proposed method during the offline phase was twice as much as that acquired using the conventional method. For the online phase, the location estimates have error distances of less than 2.67 m. Therefore, the proposed approach is beneficial for use in various LBS applications.

증강현실 환경에서 복합특징 기반의 강인한 마커 검출 알고리즘 (A Robust Marker Detection Algorithm Using Hybrid Features in Augmented Reality)

  • 박규호;이행석;한규필
    • 정보처리학회논문지A
    • /
    • 제17A권4호
    • /
    • pp.189-196
    • /
    • 2010
  • 본 논문에서는 모서리점, 경계선 및 영역, 적응적 임계값 등과 같은 복합특징을 이용하여 증강현실 시스템에서 마커의 차단현상이 발생되거나 어두운 환경에서도 사용 가능하면서 정합 성능을 개선한 마커검출 알고리즘을 제안한다. 기존의 ARToolkit에서는 마커의 일부분이 사용자에 의해 가려지거나 주위 조명 변화에 의해 입력영상의 밝기 변화가 크게 될 경우, 마커를 추출할 수 없는 반면 제안한 마커추적 알고리즘에서는 마커영역 추출시 적응적 임계값 기법을 사용하여 조명의 변화에 둔감하게 반응하여 정확한 마커영역만을 분리 추출할 수 있다. 그리고 모서리 여부를 판단하고 모서리점이 가려진 경우, 추출된 직선의 교점으로부터 모서리점을 추출하므로 차단에 의해 마커가 가려졌을 때에도 정확한 마커 영역을 추출할 수 있다. 또한, 등록된 마커와의 정합시, 와핑에서 발생되는 마커의 크기 및 중심위치 변화를 보정하는 기법을 추가하여 정합 성능을 개선 시켰다. 실험 결과 제안한 알고리즘은 주위 조명 변화와 차단 현상에 강인하게 마커를 검출하였으며, 유사한 마커 태그를 구분 할 수 있는 정합 유사도가 종전보다 30% 증가한 것을 확인 할 수 있었다.

A Knowledge-based Model for Semantic Oriented Contextual Advertising

  • Maree, Mohammed;Hodrob, Rami;Belkhatir, Mohammed;Alhashmi, Saadat M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권5호
    • /
    • pp.2122-2140
    • /
    • 2020
  • Proper and precise embedding of commercial ads within Webpages requires Ad-hoc analysis and understanding of their content. By the successful implementation of this step, both publishers and advertisers gain mutual benefits through increasing their revenues on the one hand, and improving user experience on the other. In this research work, we propose a novel multi-level context-based ads serving approach through which ads will be served at generic publisher websites based on their contextual relevance. In the proposed approach, knowledge encoded in domain-specific and generic semantic repositories is exploited in order to analyze and segment Webpages into sets of contextually-relevant segments. Semantically-enhanced indexes are also constructed to index ads based on their textual descriptions provided by advertisers. A modified cosine similarity matching algorithm is employed to embed each ad from the Ads repository into one or more contextually-relevant segments. In order to validate our proposal, we have implemented a prototype of an ad serving system with two datasets that consist of (11429 ads and 93 documents) and (11000 documents and 15 ads), respectively. To demonstrate the effectiveness of the proposed techniques, we experimentally tested the proposed method and compared the produced results against five baseline metrics that can be used in the context of ad serving systems. In addition, we compared the results produced by our system with other state-of-the-art models. Findings demonstrate that the accuracy of conventional ad matching techniques has improved by exploiting the proposed semantically-enhanced context-based ad serving model.

이산 속성 컨텍스트를 위한 시퀀스 매칭 기반 컨텍스트 예측 (Context Prediction based on Sequence Matching for Contexts with Discrete Attribute)

  • 최영환;이상용
    • 한국지능시스템학회논문지
    • /
    • 제21권4호
    • /
    • pp.463-468
    • /
    • 2011
  • 지금까지 컨텍스트 예측 방법들은 이산 속성 컨텍스트를 대상으로 예측을 수행한 경우와 연속 속성 컨텍스트를 대상으로 예측을 수행한 경우로 나뉘어서 발전되어 왔다. 대부분의 예측 방법들은 컨텍스트의 획득 환경이나 특성에 맞게 특정 도메인에서 각각 예측 알고리즘을 작성하여 사용하여 왔기 때문에, 다양한 환경과 특성을 갖는 사용자의 컨텍스트를 대상으로 예측을 수행하기가 어렵다. 본 논문에서는 특정 도메인이나 컨텍스트의 특성에 국한되지 않고 이산 속성이나 연속 속성 컨텍스트들에 모두 적용 가능한 컨텍스트 예측 방법을 제안한다. 이를 위해 컨텍스트 속성간의 연관규칙을 고려하여 컨텍스트를 시퀀스로 생성하고, 컨텍스트 속성별 가변 가중치를 적용시켜 시퀀스 매칭 기반의 컨텍스트 예측을 수행한다. 제안한 방법을 평가하기 위해 이산 속성 컨텍스트와 연속 속성 컨텍스트에 각각 시뮬레이션한 결과 이산 속성 컨텍스트에서 80.12%, 연속 속성 컨텍스트에서 81.43%의 예측 정확도로 기존 예측방법들과 비슷한 성능을 보였다.

음성 다이얼링을 위한 화자적응 (Speaker Adaptation for Voice Dialing)

  • 김원구
    • 한국음향학회지
    • /
    • 제21권5호
    • /
    • pp.455-461
    • /
    • 2002
  • 본 논문에서는 화자독립 음소 모델을 사용하는 개인용 음성 다이얼링 시스템의 성능 개선 방법을 제안하였다. 화자독립 음소모델을 사용한 음성 다이얼링 방법은 각 화자가 발성한 단어와 연관된 음소 열만을 저장하므로 저장 공간은 크게 줄일 수 있으나 화자독립 모델을 음소 인식에 사용할 때 발생하는 오차로 인하여 화자종속 모델을 사용하는 방법보다는 인식 성능이 저하되는 문제점이 있다. 본 논문에서는 이러한 문제를 해결하기 위하여 학습과정에서 학습 데이터의 음소 열과 화자 적응을 위한 변환 벡터를 동시에 추정한 후 음소 열과 함께 저장하고, 인식 시에 화자독립 음소 모델을 각 화자의 변환벡터를 사용하여 변환한 후 인식을 수행하는 방법을 제안하였다. 여기서 화자적응을 위한 변환 벡터는 확률적 매칭 (stochastic matching)을 위한 최고 유사도 (maximum likelihood) 방법을 이용하여 구하였으며 음소 열과 함께 반복적으로 추정되었다. 인식 실험에서 제안된 방법은 음소 열만을 사용하는 기존 인식 시스템보다 우수한 성능을 나타내었다.