• Title/Summary/Keyword: User Emotion Information

Search Result 242, Processing Time 0.027 seconds

A Study on the Development of Usability Improvement Index in User Interface Design (사용자 인터페이스 디자인에 있어서 사용성 개선지수 개발에 관한 연구)

  • Park, Nam-Choon
    • Science of Emotion and Sensibility
    • /
    • v.14 no.1
    • /
    • pp.83-92
    • /
    • 2011
  • Because of the development of digital technologies and information-oriented products, the importance of user interface design and usability are increasing in recent year. So we need a systematic and rational way to measure and manage how effective the improvement of user interface is. The purpose of this study is to develop measurable ‘Usability Improvement Index' which signify how much usability has improved in user interface design. First, I made the framework of measuring and evaluating usability through analysis of existing usability metrics and previous studies. Then, I suggested the process of calculating 'Usability Improvement Index' based on categorizing characteristics of measurable usability and definition of usability metrics. The process is as in the following : measuring the present level of usability, analysis of problems, making alternative user interface design, measuring the improved level of usability, calculating Usability Improvement Index. For verification, the case study on application of Usability Improvement Index to usability improvement of application software of digital camcorder presented. This study is expected to assist 'goal oriented user interface design' and to manage usability systematically.

  • PDF

Textile image retrieval integrating contents, emotion and metadata (내용, 감성, 메타데이터의 결합을 이용한 텍스타일 영상 검색)

  • Lee, Kyoung-Mi;Park, U-Chang;Lee, Eun-Ok;Kwon, Hye-Young;Cha, Eun-MI
    • Journal of Internet Computing and Services
    • /
    • v.9 no.5
    • /
    • pp.99-108
    • /
    • 2008
  • This paper proposes an image retrieval system which integrates metadata, contents, and emotions in textile images. First, the proposed system searches images using metadata. Among searched images, the system retrieves similar images based on color histogram, color sketch, and emotion histogram. To extract emotion features, this paper uses emotion colors which was proposed on 160 emotion words by H. Nagumo. To enhance the user's convenience, the proposed textile image retrieval system provides additional functions as like enlarging an image, viewing color histogram, viewing color sketch, and viewing repeated patterns.

  • PDF

Development of Deep Learning Models for Multi-class Sentiment Analysis (딥러닝 기반의 다범주 감성분석 모델 개발)

  • Syaekhoni, M. Alex;Seo, Sang Hyun;Kwon, Young S.
    • Journal of Information Technology Services
    • /
    • v.16 no.4
    • /
    • pp.149-160
    • /
    • 2017
  • Sentiment analysis is the process of determining whether a piece of document, text or conversation is positive, negative, neural or other emotion. Sentiment analysis has been applied for several real-world applications, such as chatbot. In the last five years, the practical use of the chatbot has been prevailing in many field of industry. In the chatbot applications, to recognize the user emotion, sentiment analysis must be performed in advance in order to understand the intent of speakers. The specific emotion is more than describing positive or negative sentences. In light of this context, we propose deep learning models for conducting multi-class sentiment analysis for identifying speaker's emotion which is categorized to be joy, fear, guilt, sad, shame, disgust, and anger. Thus, we develop convolutional neural network (CNN), long short term memory (LSTM), and multi-layer neural network models, as deep neural networks models, for detecting emotion in a sentence. In addition, word embedding process was also applied in our research. In our experiments, we have found that long short term memory (LSTM) model performs best compared to convolutional neural networks and multi-layer neural networks. Moreover, we also show the practical applicability of the deep learning models to the sentiment analysis for chatbot.

Towards Next Generation Multimedia Information Retrieval by Analyzing User-centered Image Access and Use (이용자 중심의 이미지 접근과 이용 분석을 통한 차세대 멀티미디어 검색 패러다임 요소에 관한 연구)

  • Chung, EunKyung
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.51 no.4
    • /
    • pp.121-138
    • /
    • 2017
  • As information users seek multimedia with a wide variety of information needs, information environments for multimedia have been developed drastically. More specifically, as seeking multimedia with emotional access points has been popular, the needs for indexing in terms of abstract concepts including emotions have grown. This study aims to analyze the index terms extracted from Getty Image Bank. Five basic emotion terms, which are sadness, love, horror, happiness, anger, were used when collected the indexing terms. A total 22,675 index terms were used for this study. The data are three sets; entire emotion, positive emotion, and negative emotion. For these three data sets, co-word occurrence matrices were created and visualized in weighted network with PNNC clusters. The entire emotion network demonstrates three clusters and 20 sub-clusters. On the other hand, positive emotion network and negative emotion network show 10 clusters, respectively. The results point out three elements for next generation of multimedia retrieval: (1) the analysis on index terms for emotions shown in people on image, (2) the relationship between connotative term and denotative term and possibility for inferring connotative terms from denotative terms using the relationship, and (3) the significance of thesaurus on connotative term in order to expand related terms or synonyms for better access points.

A User Sentiment Classification Using Instagram image and text Analysis (인스타그램 이미지와 텍스트 분석을 통한 사용자 감정 분류)

  • Hong, Taekeun;Kim, Jeongin;Shin, Juhyun
    • Smart Media Journal
    • /
    • v.5 no.1
    • /
    • pp.61-68
    • /
    • 2016
  • According to increasing SNS users and developing smart devices like smart phone and tablet PC recently, many techniques to classify user emotions with social network information are researching briskly. The use emotion classification stands for distinguishing its emotion with text and images listed on his/her SNS. This paper suggests a method to classify user emotions through sampling a value of a representative figure on a trigonometrical function, a representative adjective on text, and a canny algorithm on images. The sampling representative adjective on text is selected as one of high frequency in the samplings and measured values of positive-negative by SentiWordNet. Figures sampled on images are selected as the representative in figures; triangle, quadrangle, and circle as well as classified user emotions by measuring pleasure-unpleased values as a type of figures and inclines. Finally, this is re-defined as x-y graph that represents pleasure-unpleased and positive-negative values with wheel of emotions by Plutchik. Also, we are anticipating for applying user-customized service through classifying user emotions on wheel of emotions by Plutchik that is redefined the representative adjectives and figures.

Design of a Mirror for Fragrance Recommendation based on Personal Emotion Analysis (개인의 감성 분석 기반 향 추천 미러 설계)

  • Hyeonji Kim;Yoosoo Oh
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.4
    • /
    • pp.11-19
    • /
    • 2023
  • The paper proposes a smart mirror system that recommends fragrances based on user emotion analysis. This paper combines natural language processing techniques such as embedding techniques (CounterVectorizer and TF-IDF) and machine learning classification models (DecisionTree, SVM, RandomForest, SGD Classifier) to build a model and compares the results. After the comparison, the paper constructs a personal emotion-based fragrance recommendation mirror model based on the SVM and word embedding pipeline-based emotion classifier model with the highest performance. The proposed system implements a personalized fragrance recommendation mirror based on emotion analysis, providing web services using the Flask web framework. This paper uses the Google Speech Cloud API to recognize users' voices and use speech-to-text (STT) to convert voice-transcribed text data. The proposed system provides users with information about weather, humidity, location, quotes, time, and schedule management.

Design and Implementation of A Personalized Home Network Service System based on Emotion Analysis (감정 분석을 통한 개인화 홈 네트워크 서비스 시스템의 설계 및 구현)

  • Kim, Jun-Su;Kim, Dong-Yub;Bin, Sung-Hwan;Kim, Dae-Young;Ryu, Min-Woo;Cho, Kuk-Hyun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.6
    • /
    • pp.131-138
    • /
    • 2010
  • As ubiquitous computing environments evolve, various services are being provided as customer-centric services. In the past, studies based on personal profiles have been conducted to provide personalized services. However, identifying the user's preferences and supporting personalized services requires considerable data and time. To solve these problems, this paper proposes a system which provides the service by analyzing the user's emotions, rather than personalized service with personal profiles. In the proposed system, both speech analysis method and image analysis method are used to analyze the user's emotion. By using this emotion analysis method, we implemented the proposed system within the home network environment and finally provide effective personalized service.

Rating and Comments Mining Using TF-IDF and SO-PMI for Improved Priority Ratings

  • Kim, Jinah;Moon, Nammee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5321-5334
    • /
    • 2019
  • Data mining technology is frequently used in identifying the intention of users over a variety of information contexts. Since relevant terms are mainly hidden in text data, it is necessary to extract them. Quantification is required in order to interpret user preference in association with other structured data. This paper proposes rating and comments mining to identify user priority and obtain improved ratings. Structured data (location and rating) and unstructured data (comments) are collected and priority is derived by analyzing statistics and employing TF-IDF. In addition, the improved ratings are generated by applying priority categories based on materialized ratings through Sentiment-Oriented Point-wise Mutual Information (SO-PMI)-based emotion analysis. In this paper, an experiment was carried out by collecting ratings and comments on "place" and by applying them. We confirmed that the proposed mining method is 1.2 times better than the conventional methods that do not reflect priorities and that the performance is improved to almost 2 times when the number to be predicted is small.

Multiple Regression-Based Music Emotion Classification Technique (다중 회귀 기반의 음악 감성 분류 기법)

  • Lee, Dong-Hyun;Park, Jung-Wook;Seo, Yeong-Seok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.6
    • /
    • pp.239-248
    • /
    • 2018
  • Many new technologies are studied with the arrival of the 4th industrial revolution. In particular, emotional intelligence is one of the popular issues. Researchers are focused on emotional analysis studies for music services, based on artificial intelligence and pattern recognition. However, they do not consider how we recommend proper music according to the specific emotion of the user. This is the practical issue for music-related IoT applications. Thus, in this paper, we propose an probability-based music emotion classification technique that makes it possible to classify music with high precision based on the range of emotion, when developing music related services. For user emotion recognition, one of the popular emotional model, Russell model, is referenced. For the features of music, the average amplitude, peak-average, the number of wavelength, average wavelength, and beats per minute were extracted. Multiple regressions were derived using regression analysis based on the collected data, and probability-based emotion classification was carried out. In our 2 different experiments, the emotion matching rate shows 70.94% and 86.21% by the proposed technique, and 66.83% and 76.85% by the survey participants. From the experiment, the proposed technique generates improved results for music classification.

Context-based Service Reasoning Model Based on User Environment Information (사용자환경정보 기반 Context-based Service 추론모델)

  • Ko, Kwang-Eun;Jang, In-Hun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.907-912
    • /
    • 2007
  • The present level of ubiquitous computing technology have developed to the point where Home-server provides services that user require directly for user in the intelligent space. But it will need intelligent system to provides more active services for user in the near future. In this paper, we define the environment information about situation that user is in as Context, and collect the Context that stereotype as 4W1H form for construct the system that can decision service will be provide from information about a situation that user is in, without user's involvement. Additionally we collect information about user's emotional state, use these informations as nodes of Bayesian network for probabilistic reasoning. From that, we materialize Context Awareness system about it that what kind of situation user is in. And, we propose the Context-based Service reasoning model using Bayesian Network from the result of Context Awareness.