• 제목/요약/키워드: User Clustering

검색결과 377건 처리시간 0.038초

스토리 검색 서비스의 사용자 기록에 나타난 인물 성향 군집화 및 유형 분석 (Clustering Character Tendencies found in the User Log of a Story Database Service and Analysis of Character Types)

  • 김명준
    • 디지털콘텐츠학회 논문지
    • /
    • 제17권5호
    • /
    • pp.383-390
    • /
    • 2016
  • 본 논문은 사용자의 검색에 따라 유사도가 높은 스토리를 보여주는 서비스인 <스토리헬퍼>를 대상으로, 사용자기록에 나타난 인물 성향을 군집화하여 창작과정에서 나타나는 인물의 유형화를 수행한다. 또한 인물 유형이 관련된 장르 및 행위의 분포를 보여주는 가시화 기법을 이용하여 주요 인물 유형의 장르-행위 특성에 대해 살펴본다. 적은 수의 인물의 유형으로 과반수의 인물성향을 대표할 수 있고, 인물 유형이 특정 장르/행위와 관련성을 가지는 경우가 많음을 확인하였다. 이를 이용하여 인물 유형별로 자료를 제공하는 창작 지원 시스템이 가능할 것으로 생각된다.

1인 가구 거주자의 생활패턴이 고려된 에너지소요량 유형 분석 (An Analysis of Energy Consumption Types Considering Life Patterns of Single-person Households)

  • 이승희;정성원;임기택
    • 대한건축학회논문집:계획계
    • /
    • 제35권1호
    • /
    • pp.37-46
    • /
    • 2019
  • The energy of the building is influenced by the user 's activity due to the population, society, and economic characteristics of the building user. In order to obtain accurate energy information, the difference in the amount of energy consumption by the activities and characteristics of building users should be identified. The purpose of the study is to identify the difference in the amount of energy consumption by the user's activities in the same building, and to analyse the relationship between user's activities and demographic, social and economic characteristics. For research, energy simulation is performed based on actual user activity schedule. The results of the simulation were clustered by using K-Means clustering, a machine learning technique. As a result, four types of users were derived based on the amount of energy consumption. The more energy used in a cluster, the lower the user's income level and older. The longer a user's indoor activity times, the higher the energy use, and these activities relate to the user's characteristics. There is more than twice the difference between the group that uses the least energy consumption and the group that uses the most energy consumption.

A Survey of Advances in Hierarchical Clustering Algorithms and Applications

  • Munshi, Amr
    • International Journal of Computer Science & Network Security
    • /
    • 제22권5호
    • /
    • pp.17-24
    • /
    • 2022
  • Hierarchical clustering methods have been proposed for more than sixty years and yet are used in various disciplines for relation observation and clustering purposes. In 1965, divisive hierarchical methods were proposed in biological sciences and have been used in various disciplines such as, and anthropology, ecology. Furthermore, recently hierarchical methods are being deployed in economy and energy studies. Unlike most clustering algorithms that require the number of clusters to be specified by the user, hierarchical clustering is well suited for situations where the number of clusters is unknown. This paper presents an overview of the hierarchical clustering algorithm. The dissimilarity measurements that can be utilized in hierarchical clustering algorithms are discussed. Further, the paper highlights the various and recent disciplines where the hierarchical clustering algorithms are employed.

영화 데이터를 위한 쌍별 규합 접근방식의 군집화 기법 (Pairwise fusion approach to cluster analysis with applications to movie data)

  • 김희진;박세영
    • 응용통계연구
    • /
    • 제35권2호
    • /
    • pp.265-283
    • /
    • 2022
  • 사용자들의 영화정보를 기록한 MovieLens 데이터는 추천 시스템 연구에서 아이디어를 탐색하고 검증하는데 상당한 가치가 있는 데이터로, 기존 데이터 분할 및 군집화 알고리즘을 사용하여 사용자 평점 데이터를 기반으로 항목 집합을 분할하는 연구 등에 사용되는 데이터이다. 본 논문에서는 기존 연구에서 대표적으로 사용되었던 영화 평점 데이터와 영화 장르 데이터를 통해 사용자의 장르 선호도를 예측하여 선호도 패턴을 기반으로 사용자를 군집화(clustering)하고, 유의미한 정보를 얻는 연구를 진행하였다. MovieLens 데이터는 영화의 전체 개수에 비해 사용자별 평균 영화 평점 수가 낮아 결측 비율이 높다. 이러한 이유로 기존의 군집화 방법을 적용하는 데 한계가 존재한다. 본 논문에서는 MovieLens 데이터 특성에 모티브를 얻어 쌍별 규합 벌점함수(pairwise fused penalty)를 활용한 볼록 군집화(convex clustering) 기반의 방법을 제안한다. 특히 결측치 대체(missing imputation)도 동시에 해결하는 최적화 문제를 통해 기존의 군집화 분석과 차별화하였다. 군집화는 반복 알고리즘인 ADMM을 통해 제안하는 최적화 문제를 풀어 진행한다. 또한 시뮬레이션과 MovieLens 데이터 적용을 통해 제안하는 군집화 방법이 기존의 방법보다 노이즈 및 이상치에 상대적으로 민감하지 않은 것으로 보인다.

사용자 행위 클러스터링을 활용한 비정상 행위 탐지 (Anomaly Detection based on Clustering User's Behaviors)

  • 오상현;이원석
    • 한국정보처리학회논문지
    • /
    • 제7권8호
    • /
    • pp.2411-2420
    • /
    • 2000
  • 컴퓨터를 통한 침입을 효과적으로 탐지하기 위해서 많은 연구들이 오용탐지 기법을 개발하였다. 최근에는 오용 탐지 기법을 개선하기 위해서 비정상행위 탐지 기법에 관련된 연구들이 진행중이다. 이 논문에서는 비정상행위 탐지에서 사용자의 정상행위 패턴을 생성하기 위해 지지율에 기반한 새로운 클러스터링 알고리즘을 제시한다. 제시된 알고리즘에서는 사용자의 과거행위보다 최근행위에 보다 많은 비중을 두는 방법을 적용하였다. 한편, 사용자의 행위를 다양한 각도에서 분석될 수 있도록 사용자의 행위를 여러 판정요소로 분류하고 각 판정요소에 제시된 알고리즘을 이용하여 사용자의 정상행위 패턴을 생성한다. 결과적으로 사용자의 비정상행위가 효과적으로 탐지될 수 있다.

  • PDF

추천 시스템의 성능 안정성을 위한 예측적 군집화 기반 협업 필터링 기법 (Predictive Clustering-based Collaborative Filtering Technique for Performance-Stability of Recommendation System)

  • 이오준;유은순
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.119-142
    • /
    • 2015
  • 사용자의 취향과 선호도를 고려하여 정보를 제공하는 추천 시스템의 중요성이 높아졌다. 이를 위해 다양한 기법들이 제안되었는데, 비교적 도메인의 제약이 적은 협업 필터링이 널리 사용되고 있다. 협업 필터링의 한 종류인 모델 기반 협업 필터링은 기계학습이나 데이터 마이닝 모델을 협업 필터링에 접목한 방법이다. 이는 희박성 문제와 확장성 문제 등의 협업 필터링의 근본적인 한계를 개선하지만, 모델 생성 비용이 높고 성능/확장성 트레이드오프가 발생한다는 한계점을 갖는다. 성능/확장성 트레이드오프는 희박성 문제의 일종인 적용범위 감소 문제를 발생시킨다. 또한, 높은 모델 생성 비용은 도메인 환경 변화의 누적으로 인한 성능 불안정의 원인이 된다. 본 연구에서는 이 문제를 해결하기 위해, 군집화 기반 협업 필터링에 마르코프 전이확률모델과 퍼지 군집화의 개념을 접목하여, 적용범위 감소 문제와 성능 불안정성 문제를 해결한 예측적 군집화 기반 협업 필터링 기법을 제안한다. 이 기법은 첫째, 사용자 기호(Preference)의 변화를 추적하여 정적인 모델과 동적인 사용자간의 괴리 해소를 통해 성능 불안정 문제를 개선한다. 둘째, 전이확률과 군집 소속 확률에 기반한 적용범위 확장으로 적용범위 감소 문제를 개선한다. 제안하는 기법의 검증은 각각 성능 불안정성 문제와 확장성/성능 트레이드오프 문제에 대한 강건성(robustness)시험을 통해 이뤄졌다. 제안하는 기법은 기존 기법들에 비해 성능의 향상 폭은 미미하다. 또한 데이터의 변동 정도를 나타내는 지표인 표준 편차의 측면에서도 의미 있는 개선을 보이지 못하였다. 하지만, 성능의 변동 폭을 나타내는 범위의 측면에서는 기존 기법들에 비해 개선을 보였다. 첫 번째 실험에서는 모델 생성 전후의 성능 변동폭에서 51.31%의 개선을, 두 번째 실험에서는 군집 수 변화에 따른 성능 변동폭에서 36.05%의 개선을 보였다. 이는 제안하는 기법이 성능의 향상을 보여주지는 못하지만, 성능 안정성의 측면에서는 기존의 기법들을 개선하고 있음을 의미한다.

Region Identification on a Trained Growing Self-Organizing Map for Sequence Separation between Different Phylogenetic Genomes

  • Reinhard, Johannes;Chan, Chon-Kit Kenneth;Halgamuge, Saman K.;Tang, Sen-Lin;Kruse, Rudolf
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.124-129
    • /
    • 2005
  • The Growing Self-Organizing Map (GSOM), an extended type of the Self-Organizing Map, is a widely accepted tool for clustering high dimensional data. It is also suitable for the clustering of short DNA sequences of phylogenetic genomes by their oligonucleotide frequency. The GSOM presents the result of the clustering process visually on a coloured map, where the clusters can be identified by the user. This paper describes a proposal for automatic cluster detection on this map without any participation by the user. It has been applied with good success on 20 different data sets for the purpose of species separation.

  • PDF

Collaborative CRM using Statistical Learning Theory and Bayesian Fuzzy Clustering

  • Jun, Sung-Hae
    • Communications for Statistical Applications and Methods
    • /
    • 제11권1호
    • /
    • pp.197-211
    • /
    • 2004
  • According to the increase of internet application, the marketing process as well as the research and survey, the education process, and administration of government are very depended on web bases. All kinds of goods and sales which are traded on the internet shopping malls are extremely increased. So, the necessity of automatically intelligent information system is shown, this system manages web site connected users for effective marketing. For the recommendation system which can offer a fit information from numerous web contents to user, we propose an automatic recommendation system which furnish necessary information to connected web user using statistical learning theory and bayesian fuzzy clustering. This system is called collaborative CRM in this paper. The performance of proposed system is compared with the other methods using real data of the existent shopping mall site. This paper shows that the predictive accuracy of the proposed system is improved by comparison with others.

Clustering method for similar user with Miexed Data in SNS

  • Song, Hyoung-Min;Lee, Sang-Joon;Kwak, Ho-Young
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권11호
    • /
    • pp.25-30
    • /
    • 2015
  • The enormous increase of data with the development of the information technology make internet users to be hard to find suitable information tailored to their needs. In the face of changing environment, the information filtering method, which provide sorted-out information to users, is becoming important. The data on the internet exists as various type. However, similarity calculation algorithm frequently used in existing collaborative filtering method is tend to be suitable to the numeric data. In addition, in the case of the categorical data, it shows the extreme similarity like Boolean Algebra. In this paper, We get the similarity in SNS user's information which consist of the mixed data using the Gower's similarity coefficient. And we suggest a method that is softer than radical expression such as 0 or 1 in categorical data. The clustering method using this algorithm can be utilized in SNS or various recommendation system.

인지무선 네트워크에서 효율적인 채널 사용을 위한 협력센싱 클러스터링 게임 (Cooperative Sensing Clustering Game for Efficient Channel Exploitation in Cognitive Radio Network)

  • 장성진;윤희석;배인산;김재명
    • 한국위성정보통신학회논문지
    • /
    • 제10권1호
    • /
    • pp.49-55
    • /
    • 2015
  • 인지무선 네트워크에서 스펙트럼 센싱은 우선사용자에게 간섭을 주지 않기 위해 기본적으로 수행해야 하는 단계이다. 스펙트럼 센싱에 요구되는 샘플 수는 2차 사용자의 성능에 직접적으로 영향을 주기 때문에, 2차 사용자의 성능과 우선사용자에 대한 간섭은 트레이드오프 관계에 있다. 스펙트럼 센싱에 필요한 샘플 수는 요구되는 오검출 확률, 검출확률 및 우선 사용자의 최소 요구 SNR로 부터 얻어진다. 우선 사용자 센싱에 요구되는 SNR은 2차 사용자의 전송반경과 관련 있기 때문에, 2차사용자들을 모아 센싱집합으로 구성하고 요구되는 전송영역을 최소화시킴으로써 스펙트럼 센싱에 요구되는 우선사용자의 SNR을 완화시킬 수 있다. 따라서 스펙트럼 센싱에 필요한 최소 샘플 수를 줄임으로써 인지무선 네트워크의 전송량을 향상시킬 수 있다. 본 논문에서는 이를 위해 센싱집합인 클러스터링을 통해 게임이론으로 클러스터의 크기에 따라 얻는 이득과 손실을 트레이드오프로 디자인하고, 시뮬레이션을 통해 제안된 방법의 성능을 확인한다.