Region Identification on a Trained Growing Self-Organizing Map for
Sequence Separation between Different Phylogenetic Genomes

Johannes Reinhard1 Chon-Kit Kenneth Chan2

Saman K. Halgamuge2 Sen-Lin Tang3 and Rudolf Kruse'

' Department of Computer Science, University of Magdeburg, Germany
Mechatronics Research Group, Department of Mechanical and Manufacturing Engineering,
The University of Melbourne, Australia
38chool of Veterinary Science, The University of Melbourne, Australia
Email: joreinha@cs.uni-magdeburg.de, ckkc@mame.mu.oz.au,
saman@unimelb.edu.au, tangsi8@hotmail.com and kruse@iws.cs.uni-magdeburg.de

ABSTRACT: The Growing Self-Organizing Map (GSOM),
an extended type of the Self-Organizing Map, is a widely
accepted tool for clustering high dimensional data. It is also
suitable for the clustering of short DNA sequences of
phylogenetic genomes by their oligonucleotide frequency.
The GSOM presents the result of the clustering process
visually on a coloured map, where the clusters can be
identified by the user. This paper describes a proposal for
automatic cluster detection on this map without any
participation by the user. It has been applied with good
success on 20 different data sets for the purpose of species
separation.

1 INTRODUCTION

Genome sequencing becomes one of the most important
approaches for understanding environmental
microorganisms at molecular level. However, sequencing
the genomes of environmental microorganisms is difficult
because they are uncultivable. One possible solution is to
directly isolate DNAs from environmental samples, ligate
these predigested DNAs into suitable vectors and transform
them into bacterial clones. Then the whole genome shotgun
sequencing can be applied to these clones, as carried out by
Venter et al. [1]. However, a drawback of this strategy is
that the minority groups of microbacteria in the sample
present much less DNA. This will cause many fragmented
and unclassified sequences since there is a poor coverage
among them and no homolog can be found in current
databases. In Venter’s case, there are 17.7% meaning that
177 million DNA sequences are unclassified [1]. A tool
which can classify these sequences with biological meaning
will make these immense data useful. The Self-Organizing
Map (SOM) is a useful tool for associating the sequences to
their correct phylogenetic genomes as previously tested and
found by Abe et al. [2]. The SOM could cluster short
bacteria sequences by using different nucleotide frequencies
as the training features.

In contrast to Abe et al, we chose the Growing
Self-Organizing Map (GSOM) instead of the SOM because
of its advantages over the SOM. In GSOM, there is no need
for predetermined map structure and therefore no prior
knowledge on inherent structure of data is needed [3]. This
feature of the GSOM is important in our case since for the
environmental genome sequencings, there is no prior

knowledge available. In addition, GSOM has also been
successfully used in bioinformatics [4].

In order to make the SOM-based algorithm practically
applicable to cluster species, identification of clusters from
the distance map is an important step. The genomic
sequences of some species appear overlapped in the cluster
boundary of the trained GSOM map. This overlapping
between clusters makes the distance map not so obvious to
visually identify the clusters. However this task was not
addressed before. We present an add-on process to the
SOM-based algorithm for species separation by automatic
identification of the clusters on the distance map.

We proposed a new three-step approach to this sequence
separation. The next section will describe these 3 steps. The
experimental results for this approach are presented in
section 3. Finally the discussion section will conclude this

paper.

2 METHODS

In this section, the three-step approach to sequence
separation is described. The first subsection shortly explains
how to preprocess the DNA sequences so that GSOM can
process them. In the second subsection, the GSOM
algorithm is described. The third step comprises the step of
automatic region identification and is described in detail.

2.1 Preprocessing

The data available for species separation are short DNA
sequences. The sequences are preprocessed by a method
described by Abe et al. [2] to provide the nucleotide
frequency. The nucleotide frequency is determined by
moving a sliding window of a fixed size (n € {2,3,4}) along
the sequence. It starts at the beginning of the sequence and
moves base by base towards the end. Along the way, it is
counted how often each of the 4" permutations (with
repetition) occurs in the sequence. The frequency vectors
generated with a window size of 2, 3 and 4 are denoted as
di-, tri- and tetranucleotides respectively. The vectors are
16-, 64- and 256-dimensional respectively and have to be
normalized to a range between 0 and 1 as required by
GSOM.
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2.2 The Growing Self-Organizing Map

The Self-Organizing Map as well as its extended version,
the Growing Self-Organizing Map, is known as a neural
network used for clustering high dimensional data. This is
achieved by projecting the data onto a two or three
dimensional feature map with lattice structure and every
lattice point representing a neuron or a node in the map. The
mapping preserves the data topology, so that similar
samples in the input space can be found quite close to each
other on the grid map. The process of clustering can be
described as a training procedure, in which a sample is
presented to the neural network and a ‘winning’ neuron,
which has the smallest distance to the presented sample, is
identified. This *winning’ neuron and its neighbours adapt
to the sample by a certain amount of distance. After several
training epochs (epoch = each sample has been presented
once), the clusters will be formed in the neural network
structure.

One problem of the SOM is that the structure (i.e., length
and width) of the lattice has to be defined before training.
Therefore, prior knowledge is needed or the structure must
be found by several trials. The GSOM overcomes this
limitation by dynamically adjusting the structure during
training. It creates new nodes at the edge of the map
whenever a node has to represent a part of the input space
with too many and too different samples. The size of the
map can be controlled by a parameter, the Spread Factor
(€ [0,1]). A higher Spread Factor results a bigger map [3].

The GSOM training can be divided into three steps: An
initialization of the map, a growing phase and a smoothing
phase. We chose hexagonal topology which is known to
have better topology preservation than a rectangular grid

[5].
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Figure 1: Gray scaled image of a (in practice
coloured) Distance Map (3 species, set 3)

After training, the trained GSOM can be displayed as a
distance map (as shown in Figure 1). The distance map
visualizes the distance of a node’s weight vector to each of
its six neighbour nodes. Therefore the hexagon is divided
into six triangles and each triangle symbolizes the distance
between the node to whose hexagon it belongs and the node
with whose hexagon an edge is shared. The distance value is
displayed by colour code, whereas the coherence between
the colour and the scalar distance values is displayed on a
scale, located on the right hand side of the map.

2.3 Automatic Cluster Detection

For the following descriptions of the automatic cluster
detection algorithm, two terms are introduced, which are
quite descriptive and thus will help in the understanding of
the presented approach. The term region is defined as a
cohesive area of hexagons which have low distance values
between nodes inside this area. Due to the topology
preserving nature of the GSOM, close data in the high
dimensional input space (which are likely to belong to the
same cluster) are projected on close (i.e., cohesive) areas.
Furthermore the distance values inside this area are low
compared to the distance value at a border between two
areas on the map, which in fact should represent two
different clusters in the input space. Hence, the detection of
clusters in the high dimensional input space corresponds to
the detection of regions on the two dimensional surface of
the distance map.

The second term introduced is the centre of a region
which is defined as: 4 hexagon belongs to the centre of a
region, if it has a relatively very low distance to its
surrounding hexagons. As it is difficult to assign the
hexagons in the overlapping zones, our approach begins
with assigning the hexagons in the centre of a region which
are not affected by any overlapping and then deals with the
more difficult assignable hexagons in the border zones later.

The basic idea of the proposed algorithm is to use the
well known graphical algorithm Flood Fill or Region
Growing to detect the centre of the regions first. When the
seed point and a homogeneity threshold are given to the
algorithm, it can detect the homogenous region in respect to
that threshold. It works as follows: The flood starts at the
seed point and recursively fills around it as long as the
homogeneity threshold is not exceeded. By doing this, the
algorithm fills a whole region and only stops at the borders
which exceed the threshold. In our case, we used the
distance value as the homogeneity criteria. Applying this
algorithm several times and always starting with a seed
point outside the filled region, the map could finally be
divided into different regions.

As we have to deal with overlapping clusters whose
borders are not clear, this Flood Fill algorithm has a high
chance of leakage. Leakage will result in two different
clusters being identified as one. Our solution to this problem
is to find the centres of the regions first. Finding the centres
means applying the Flood Fill with a “tough” threshold
value, which only fills hexagons with low distance values
(i-e., that are located in the centre) and leaves much space
unfilled. The unfilled space will be handled later.

Our approach for automatic region identification is
divided in seven steps which are described in detail below.

2.3.1 Creating an average distance map

The algorithm first concentrates on detecting the centre of
each region. The definition of the centre demands for a
measure for a hexagon’s distance to its surrounding
hexagons. We chose the mean of the six distance values as
this measure. The resulting map, which is referred to as
average distance map (Figure 2), only displays one value for
each hexagon, instead of six as the ‘explicit’ distance map
does. Using the Flood Fill on the average distance map
determines the centre of each region.
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Figure 2: Average Distance Map (3 species, set 3)

2.3.2 Plotting histogram of distance values

The Flood Fill needs a threshold value to be determined. In
search for an accurate threshold value for the Flood Fill, the
distribution of the distance values is visualized in a
histogram. After investigating many of the histograms, it
became obvious, that (for a sufficient high Spread Factor
value, which we assume for our approach) they all share a
common shape (Figure 3). The shape can be described as
the sum of two overlapping
Gaussian bell-shaped curves:
The “left” one with low mean
and low variance, the “right”
one with higher mean and high
variance (Figure 4). One could
imagine the left curve as
describing the distribution of
the low inner region distances,
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Figure 3: Typical and the right curve as
histogram describing the distribution of
the higher border distances.
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Figure 4: Histogram curve as sum of two overlapping
Gaussian bell-shaped curves

The discovered regularity in the shape of the histograms
encourages determining the threshold by the histogram. A
characteristic point which is also “tough” enough for our
purpose is the maximum of the histogram. According to our
assumption concerning the Spread Factor for GSOM and
the resulting size of map, the hexagons inside a region
outweigh the hexagons located at the border. Thus the
distance value describing the maximum of the histogram
belongs to the inner region distances. It is also strict enough
as a threshold for the Flood Fill, as all distances on the right
slope of the histogram are ignored, many of which belong to
the inner region distances according to the model of two
overlapping Gaussian bell-shaped curves. Applying the

Flood Fill with the maximum as the threshold results the
detection of the centre of a region.

2.3.3 Identifying the maximum in the histogram

The shape of a histogram depends highly on its resolution,
determined by the used interval range. As the appropriate
interval range is difficult to decide as it depends on many
factors and even on the favoured purpose, the maximum is
not determined by deciding this issue. Instead our approach
works on the raw list of distance values. The list is sorted
and could be imagined as a sorted array with the lowest
distance value stored at the first index (which is 0 in most
programming languages), the highest distance value at the
last index. When the distance values are plotted as points on

a scaled axis, the maximum of the histogram must be

situated at a location where the points are most dense. This

location is determined as follows:

(1) Determine, on which half of the scaled axis, the
majority of points are located. This is equal to
determining the higher bar in a two-bar-histogram.

(2) Decrease the absolute range of the axis by simply
cutting off the outer half of the “losing” side. For
example, if the left bar is higher (i.e. the winning side),
the last fourth of the axis is cut off, which is the outer
half of the losing side. In respect of the common shape
of the histograms, we assume a monotonously gradient
left and right of the maximum. Thus we consider the
maximum as not affected by the cut.

(3) Continue at step (1) until the lower bound of the axis
equals the upper bound. This distance is considered as
the maximum of the histogram.

Tests have shown that the determined maximum value is
quite a good choice for many resolutions of the histogram.
However it is not always desirable for our purpose. Imagine
a situation where the peak of the histogram is located very
early and is followed by quite a big number of nearly
equal-high bars. All the nodes with these distances will not
be filled by the flood, although we might consider them as
part of the frequent occurring ‘inner region’ (thus centre)
distances. On the other hand a peak located too late,
increases the risk of leakage between regions with unclear
borders. Therefore we believe that a smoothed maximum
belonging to a bar, located somewhere in the middle of the
relatively high bars, represents better our situation, where
we are looking for the most occurring distances in respect to
all regions. The smoothing is done in a second step, which
uses the determined maximum from the previous step as
initial value.

(1) As we are determined to find a more appropriate new
maximum, the maximum determined by the step before
is named the o/d maximum.

(2) A range is determined, by subtracting the smallest
distance in the whole list which is stored at index 0
from the distance of the old maximum.

(3) The mean value is calculated, considering all the values
located in the calculated range around the old
maximum.

(4) The deviation between the mean and the old maximum
is checked:

a. If the corresponding index values differ by 2 or
less, the algorithm stops returning the mean as the
new maximum
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b. Else, the range is reduced by 25%, the old
maximum is reassigned with the value of the
mean and the algorithm continues at step (3)

2.3.4 Flood Fill the centres of the regions

The Flood Fill algorithm is now applied on the average
distance map. The distance as the homogeneity criteria and
the strict maximum, determined in the previous step as the
demanded strict threshold, lead in the detection of the centre
of each region. There is one additional condition in the
Flood Fill algorithm: Whenever a hexagon didn’t gather any
hits (empty node), the hexagon is neither filled by the flood,
nor chosen as a seed point for the flood. This is done
because empty nodes are often at the borders between two
regions but nonetheless have quite low distance values and
hence have a high risk of being responsible for leakage. The
reason for this bad property of the empty nodes is that
during growth the GSOM generates new neighbours at all
free positions of the growing node. By this, some redundant
nodes are created which represent an empty part of the input
space.

Figure 5: Flood Fill detects 5 centres of regions
(3 species, set 3)

However after appliance of the Flood Fill the results are
unsatisfying (As shown in Figure 5). Especially for large
regions, the Flood Fill often creates several centres where in
fact only one should be found. Therefore we developed a
method for fusion of similar region centres.

2.3.5 Fusion of similar centre regions using the
variance of data

The process of the fusion of similar centres of a region is

based on two assumptions:

1. Every region has something like an “ideal” sample that
describes best all members of the region.

2. The members of the region have a certain distribution
and the standard deviation can be used as a measure of
dispersion for this distribution.

In the following, an ideal exemplar for every centre of
region is determined, and the deviation between the nodes
belonging to the centre of region and the ideal exemplar.
The similarity of two region centres is investigated based on
these two values. If the similarity is high, the two region
centres are assumed to in fact belong to the same region and
thus are fused. Mathematically, the ideal exemplar vector is
determined by calculating for each dimension the mean of
the weight vectors that belong to the centre of the region.
The standard deviation of each centre of a region is
calculated accordingly. So the result is a vector which
contains in each dimension the standard deviation of the
weight vectors of the centre from the ideal vector. On the
basis of this vector a maximal permitted distance is
determined, which defines how far away an ideal exemplar

of another centre is allowed to be, to be considered as
similar. The maximal permitted distance is calculated by
calculating the norm of the standard deviation vector
multiplied by a factor, the fusion greed. As we chose the
Manhattan-distance as distance measure, the norm is
defined accordingly as:

H:7 - . = £y M

Experiments show that the value 1.5 as a rule of thumb for
the fusion greed gives quite good results for many maps, but
is also strict enough not to lead to a fusion of two region
centres where there are in fact two region centres. After
having calculated the ideal exemplar and the maximal
permitted distance for every region, the distances between
the ideal exemplars are determined. If the calculated
distance between the ideal exemplar of a centre A and a
centre B is less than the maximal permitted distance of at
least one of the centres, both centres are fused. The
described procedure is applied on the resulting centres again
and again, until no fusions occur anymore. Figure 6 shows
the map after this fusion step.
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Figure 6: After fusion there are 3 centres left

2.3.6 Assigning the remaining nodes to one of the
centre region of clusters

In this step all those nodes are assigned that don’t belong to
a centre yet. After the assignment procedure all nodes are
assigned, so that the evolving areas are no longer be
denoted as centres of a region but as regions. The procedure
needs the information about the distance of every node to its
six surrounding nodes, i.e. the information that are
visualized on the explicit distance map. The procedure
works as follows: In search for a centre of a region, a
remaining node joins the node that is closest it. Both again
join the node which is closest to them, and so on, until they
finally join a node that belongs to a centre of a region. The
group of searching nodes is then assigned to this centre.
This final clustered GSOM is shown in Figure 7.

Figure 7: Assignment of the remaining hexagons
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2.3.7 Analysing the resulting borders and joining
weak-border clusters

In a last step weak-border regions are joined. This step is
necessary, because of too less fusions in step 5, due to the
strictly chosen fusion greed. If two regions have weak
borders they should be joined. Therefore the explicit
distance map is analysed and those distances are determined
that form the current border between two regions. The mean
of these distance values is determined, which provides
information about the average strength of the border.
Whenever the average strength of a border is less than a
threshold, the determination of which is described below,
the two regions are joined. The threshold doesn’t need to be
fixed that strict as for the Flood Fill, because there is no risk
of leakage anymore. Leakage could happen, if only one
border distance is quite low, however the decision whether
or not to join two regions is based on al/l border distances.

The threshold is again determined by the shape of the
histogram. It should be situated somewhere at the right
slope, somewhere around the point where the bars have half
the height of the maximum. One characteristic point, which
fulfils the demand and is easy to determine, is the inflection
point of the Gaussian distribution representing the inner
distances (according to our model of the two overlapping
Gaussian bell-shaped curves). Considering the assumption
of the normal distribution of the inner distances the
inflection point can easily be determined if the variance of
the distribution is known. We assume that there is negligible
overlapping on the left half of the inner distances curve and
hence the variance of the distribution can be calculated only
using the mean (i.e. the maximum of the histogram) and the
distance values left of it. Adding the standard deviation
(square root of the variance) to the mean distance, results in
the inflection point. Whenever the average strength of a
border is below the distance representing the inflection
point, the two regions are joined.

3 RESULTS

3.1 Data for Evaluation

To evaluate the proposed approach, we generated 10 sets of
3 species and 10 sets of 10 species. The species were
randomly chosen out of a set of 64 species (50 bacteria and
14 archaea) from the NCBI complete genome database [6].
The DNA sequences of these species are cut into
non-overlapping short sequences of 10,000 bases. In this
experiment, we used the tetranucleotide frequency as the
training feature. We preprocess these short sequences as
tetranucleotide frequency vectors and used them as the
GSOM input vectors. As the DNA sequences of the
different species differ in their length, we obtain different
number of input vectors for each species.

3.2 Method of Evaluation

We adapt the concept of correctness ratio from Tomida et
al. [7] into our application for the evaluation of the
clustering results. In the case of fewer detected regions than
the number of species in the data set, every region is
assigned to one species only. A region will be assigned to
the species which has the majority nodes containing this

species. If one species is eligible for more than one region,
the species will assign to the region which contains the
highest number of nodes containing that species. Then other
regions will be assigned to the species having the second
majority nodes and so forth. In the other case in which the
number of species is fewer than the detected region, the
assigning process will be continued in a similar way for
more than one round of assigning until all regions are
assigned to species. After this assigning process, the number
of correctly assigned nodes of a particular species will be
the number of nodes contained in the region that has been
assigned to the species.

We use the name ‘Accuracy’ instead of correctness ratio
for a more meaningful representation in our context. The
overall accuracy is determined according to the formula:

Yici

Accuracy = x 100 2)

Yini

Where ¢; is the number of correctly assigned nodes of
species i and »; is the total number of nodes containing
species i.

3.3 Evaluation Results

Each set contains 3 randomly chosen species
Training feature: tetranucleotide frequency

Set number 1 2 3 4 5
Accuracy (%) 888 979 989 929 995
Set number 6 7 8 9 10

Accuracy (%) 790 830 997 820 95.1

Table 1: Evaluation results for the 10 sets with 3
randomly chosen species

Each set contains 10 randomly chosen species
Training feature: tetranucleotide frequency

Set number 1 2 3 4 5
Accuracy (%) 843 868 786 643 715
Set number 6 7 8 9 10

Accuracy (%) 775 715 902 622 83.6

Table 2: Evaluation results for the 10 sets with 10
randomly chosen species

3.4 Interpretation

The results are quite good for some sets (especially the
3-species sets in Table 1), considering the fact that with our
method of evaluation 100% accuracy is not achievable if
overlapping (i.e., nodes containing more than one species)
occurs. However, overlapping occurs only for three (sets 4,
7 & 9 in Table 1) of the 3-species sets and for nine (sets 1-9
in Table 2) of the 10-species sets.

The partly unsatisfying results of the evaluation are due
to the strict evaluation method which is based on the
assumption that every species is situated in only one region
and which evaluates very strictly in case of violation against
this assumption. However, this assumption is indeed
violated against in many sets. On the one hand, the GSOM
using the tetranucleotide frequency as training feature splits
several species in two regions. This fact, which was already
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observed by Abe et al., is referred to as intraspecies
separation. Abe et al. ascribes it to the transcription polarity
of protein coding sequences [2]. In the case of intraspecies
separation only one of the regions (in most cases the bigger
one) could be regarded as correctly assigned while the other
region’s nodes count as detected wrong. On the other hand
two closely related species may contain a very similar
nucleotide frequency and they may appear entirely
overlapped in the map. According to our method of
evaluation only one species is allowed to cover a region,
hence for one species all nodes are counted as wrongly
assigned. The evaluation method however is justified as the
algorithm is developed for species separation and the
evaluation results show its accuracy for this purpose.

As far as the maps with only 3 species are concerned,
only in 4 cases there was no intraspecies separation
observed at all. In two cases (sets 1 & 2) the species split.
However in set 2, the centres of the split species could be
fused by step 5 of our algorithm. This leads to the
assumption that distortion occurred for this map. In 4 other
cases (sets 4, 6, 7 & 9) intraspecies separation did not result
in a split but in a quite clear border inside a region. Our
algorithm detects the regions with quite clear inner borders
as two different regions.

The maps with 10 species are an even higher challenge
for our algorithm: Intraspecies separation with split occurs
in almost every map (except set 1) for up to 4 species (only
set 4). In addition, the entire overlapping of two species
happened in sets 7 & 9. Furthermore the regions are not that
big as for the 3-species maps and the algorithm has also to
deal with very small and narrow regions. For them, there is
no hexagon, which is completely surrounded by hexagons
containing the same species samples and therefore such a
region does not have a real low distance hexagon in the
average distance map. In some cases the strict threshold for
the Flood Fill is lower than the lowest distance of that
region, hence no centre is detected and the whole region
will be assigned to the centre of another region.

4 DISCUSSION

In this paper we introduced an algorithm which automates
the process of visual cluster detection on the SOM-based
distance map. It has good detection rates for maps with
large regions but the detection for maps with small regions
could still be improved. Nevertheless the evaluation results
don’t reflect its accuracy for this task. They evaluate its
accuracy for the purpose of grouping species according to
their oligonucleotide frequency. As with this feature, an
appropriate clustering with only one cluster for each species
is not possible, and as the algorithm lacks of a way to detect
the split of a species, we receive these little worse results, if
splits occur.

To improve the results, research on a more appropriate

feature must be done. In this context, we refer to Tyson et al.

‘who suggests a three-step approach for species separation
[8]

But improvements can also be done on the proposed
algorithm itself. It has difficulties in detecting small regions.
This is due to an over-strict threshold for the Flood Fill.
During the development and testing of our approach, it
shows that the choice of an appropriate threshold is crucial
but nonetheless difficult. Therefore our approach disperses

the influence of the choice of a threshold to a several-step
algorithm which contains the finding of the threshold for the
Flood Fill, the Fusion Greed for the fusion and the threshold
for joining the weak borders. The setting for these three
parameters is important and future work could be done on
the determination of more suitable parameters. However we
recommend developing a different approach that does not
based on one global threshold adapted from the histogram
but on several local thresholds (one corresponds to each
region). This could improve the results and in addition make
the algorithm suitable for other data sets. The current
algorithm works only on datasets with similar dispersion of
the data inside each cluster. Otherwise the histogram would
not have this characteristic shape of two overlapping
Gaussian bell-shaped curves but several peaks for each
region’s inner distances. Future work will concentrate on
making the algorithm applicable for such data sets.
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