• Title/Summary/Keyword: Used nuclear fuel

Search Result 852, Processing Time 0.027 seconds

Review, Assessment, and Learning Lesson on How to Design a Spectroelectrochemical Experiment for the Molten Salt System

  • Killinger, Dimitris;Phongikaroon, Supathorn
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.209-229
    • /
    • 2022
  • This work provided a review of three techniques-(1) spectrochemical, (2) electrochemical, and (3) spectroelectrochemical-for molten salt medias. A spectroelectrochemical system was designed by utilizing this information. Here, we designed a spectroelectrochemical cell (SEC) and calibrated temperature controllers, and performed initial tests to explore the system's capability limit. There were several issues and a redesign of the cell was accomplished. The modification of the design allowed us to assemble, align the system with the light sources, and successfully transferred the setup inside a controlled environment. A preliminary run was executed to obtain transmission and absorption background of NaCl-CaCl2 salt at 600℃. It shows that the quartz cuvette has high transmittance effects across all wavelengths and there were lower transmittance effects at the lower wavelength in the molten salt media. Despite a successful initial run, the quartz vessel was mated to the inner cavity of the SEC body. Moreover, there was shearing in the patch cord which resulted in damage to the fiber optic cable, deterioration of the SEC, corrosion in the connection of the cell body, and fiber optic damage. The next generation of the SEC should attach a high temperature fiber optic patch cords without introducing internal mechanical stress to the patch cord body. In addition, MACOR should be used as the cell body materials to prevent corrosion of the surface and avoid the mating issue and a use of an adapter from a manufacturer that combines the free beam to a fiber optic cable should be incorporated in the future design.

A Study About Radionuclides Migration Behavior in Terms of Solubility at Gyeongju Low- and Intermediate-Level Radioactive Waste (LILW) Repository

  • Park, Sang June;Byon, Jihyang;Lee, Jun-Yeop;Ahn, Seokyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.113-121
    • /
    • 2021
  • A safety assessment of radioactive waste repositories is a mandatory requirement process because there are possible radiological hazards owing to radionuclide migration from radioactive waste to the biosphere. For a reliable safety assessment, it is important to establish a parameter database that reflects the site-specific characteristics of the disposal facility and repository site. From this perspective, solubility, a major geochemical parameter, has been chosen as an important parameter for modeling the migration behavior of radionuclides. The solubilities were derived for Am, Ni, Tc, and U, which were major radionuclides in this study, and on-site groundwater data reflecting the operational conditions of the Gyeongju low and intermediate level radioactive waste (LILW) repository were applied to reflect the site-specific characteristics. The radiation dose was derived by applying the solubility and radionuclide inventory data to the RESRAD-OFFSITE code, and sensitivity analysis of the dose according to the solubility variation was performed. As a result, owing to the low amount of radionuclide inventory, the dose variation was insignificant. The derived solubility can be used as the main input data for the safety assessment of the Gyeongju LILW repository in the future.

Radiological Safety Assessment for a Near-Surface Disposal Facility Using RESRAD-ONSITE Code

  • Jang, Jiseon;Kim, Tae-Man;Cho, Chun-Hyung;Lee, Dae Sung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.123-132
    • /
    • 2021
  • Radiological impact analyses were carried out for a near-surface radioactive waste repository at Gyeongju in South Korea. The RESRAD-ONSITE code was applied for the estimation of maximum exposure doses by considering various exposure pathways based on a land area of 2,500 ㎡ with a 0.15 m thick contamination zone. Typical influencing input parameters such as shield depth, shield materials' density, and shield erosion rate were examined for a sensitivity analysis. Then both residential farmer and industrial worker scenarios were used for the estimation of maximum exposure doses depending on exposure duration. The radiation dose evaluation results showed that 60Co, 137Cs, and 63Ni were major contributors to the total exposure dose compared with other radionuclides. Furthermore, the total exposure dose from ingestion (plant, meat, and milk) of the contaminated plants was more significant than those assessed for inhalation, with maximum values of 5.5×10-4 mSv·yr-1 for the plant ingestion. Thus the results of this study can be applied for determining near-surface radioactive waste repository conditions and providing quantitative analysis methods using RESRAD-ONSITE code for the safety assessment of disposing radioactive materials including decommissioning wastes to protect human health and the environment.

Identification of Mechanical Parameters of Kyeongju Bentonite Based on Artificial Neural Network Technique

  • Kim, Minseop;Lee, Seungrae;Yoon, Seok;Jeon, Min-Kyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.3
    • /
    • pp.269-278
    • /
    • 2022
  • The buffer is a critical barrier component in an engineered barrier system, and its purpose is to prevent potential radionuclides from leaking out from a damaged canister by filling the void in the repository. No experimental parameters exist that can describe the buffer expansion phenomenon when Kyeongju bentonite, which is a buffer candidate material available in Korea, is exposed to groundwater. As conventional experiments to determine these parameters are time consuming and complicated, simple swelling pressure tests, numerical modeling, and machine learning are used in this study to obtain the parameters required to establish a numerical model that can simulate swelling. Swelling tests conducted using Kyeongju bentonite are emulated using the COMSOL Multiphysics numerical analysis tool. Relationships between the swelling phenomenon and mechanical parameters are determined via an artificial neural network. Subsequently, by inputting the swelling tests results into the network, the values for the mechanical parameters of Kyeongju bentonite are obtained. Sensitivity analysis is performed to identify the influential parameters. Results of the numerical analysis based on the identified mechanical parameters are consistent with the experimental values.

Prediction Model for Saturated Hydraulic Conductivity of Bentonite Buffer Materials for an Engineered-Barrier System in a High-Level Radioactive Waste Repository

  • Gi-Jun Lee;Seok Yoon;Bong-Ju Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.225-234
    • /
    • 2023
  • In the design of HLW repositories, it is important to confirm the performance and safety of buffer materials at high temperatures. Most existing models for predicting hydraulic conductivity of bentonite buffer materials have been derived using the results of tests conducted below 100℃. However, they cannot be applied to temperatures above 100℃. This study suggests a prediction model for the hydraulic conductivity of bentonite buffer materials, valid at temperatures between 100℃ and 125℃, based on different test results and values reported in literature. Among several factors, dry density and temperature were the most relevant to hydraulic conductivity and were used as important independent variables for the prediction model. The effect of temperature, which positively correlates with hydraulic conductivity, was greater than that of dry density, which negatively correlates with hydraulic conductivity. Finally, to enhance the prediction accuracy, a new parameter reflecting the effect of dry density and temperature was proposed and included in the final prediction model. Compared to the existing model, the predicted result of the final suggested model was closer to the measured values.

Mesh Stability Study for the Performance Assessment of a Deep Geological Repository Using APro

  • Hyun Ho Cho;Hong Jang;Dong Hyuk Lee;Jung-Woo Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.2
    • /
    • pp.283-294
    • /
    • 2023
  • APro, developed in KAERI for the process-based total system performance assessment (TSPA) of deep geological disposal systems, performs finite element method (FEM)-based multiphysics analysis. In the FEM-based analysis, the mesh element quality influences the numerical solution accuracy, memory requirement, and computation time. Therefore, an appropriate mesh structure should be constructed before the mesh stability analysis to achieve an accurate and efficient process-based TSPA. A generic reference case of DECOVALEX-2023 Task F, which has been proposed for simulating stationary groundwater flow and time-dependent conservative transport of two tracers, was used in this study for mesh stability analysis. The relative differences in tracer concentration varying mesh structures were determined by comparing with the results for the finest mesh structure. For calculation efficiency, the memory requirements and computation time were compared. Based on the mesh stability analysis, an approach based on adaptive mesh refinement was developed to resolve the error in the early stage of the simulation time-period. It was observed that the relative difference in the tracer concentration significantly decreased with high calculation efficiency.

Improvement of Chloride Induced Stress Corrosion Cracking Resistance of Welded 304L Stainless Steel by Ultrasonic Shot Peening

  • Hyunhak Cho;Young Ran Yoo;Young Sik Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.266-277
    • /
    • 2024
  • Due to its good corrosion and heat resistance with excellent mechanical properties, 304L stainless steel is commonly used in the fabrication of spent nuclear fuel dry storage canisters. However, welds are sensitive to stress corrosion cracking (SCC) due to residual stress generation. Although SCC resistance can be improved by stress relieving the weld and changing the chloride environment, it is difficult to change corrosion environment for certain applications. Stress control in the weld can improve SCC resistance. Ultrasonic shot peening (USP) needs further research as compressive residual stresses and microstructure changes due to plastic deformation may play a role in improving SCC resistance. In this study, 304L stainless steel was welded to generate residual stresses and exposed to a chloride environment after USP treatment to improve SCC properties. Effects of USP on SCC resistance and crack growth of specimens with compressive residual stresses generated more than 1 mm from the surface were studied. In addition, correlations of compressive residual stress, grain size, intergranular corrosion properties, and pitting potential with crack propagation rate were determined and the improvement of SCC properties by USP was analyzed.

An Efficient Sulfuric Acid- and Hydrazine-based Process for Recycling Wastewater Generated From U(VI)-Contaminated Soil-Washing

  • Hyun-Kyu Lee;Byung-Moon Jun;Tack-Jin Kim;Sungbin Park;Seonggyu Choi;Jun-Young Jung;Hee-Chul Eun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.159-171
    • /
    • 2024
  • This study aimed to develop an efficient recycling process for wastewater generated from soil-washing used to remediate uranium (U(VI))-contaminated soil. Under acidic conditions, U(VI) ions leached from the soil were precipitated and separated through neutralization using hydrazine (N2H4). N2H4, employed as a pH adjuster, was decomposed into nitrogen gas (N2), water (H2O), and hydrogen ions (H+) by hydrogen peroxide (H2O2). The residual N2H4 was precipitated when the pH was adjusted using sulfuric acid (H2SO4) to recycle the wastewater in the soil-washing process. This purified wastewater was reused in the soil-washing process for a total of ten cycles. The results confirmed that the soil-washing performance for U(VI)-contaminated soil was maintained when using recycled wastewater. All in all, this study proposes an efficient recycling process for wastewater generated during the remediation of U(VI)-contaminated soil.

Numerical Simulation of Rainfall Infiltration Into Disposal Cover of Performance Test Facility

  • Mijin Kwon;Seho Choi;Chunhyung Cho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.2
    • /
    • pp.185-199
    • /
    • 2024
  • Disposal cover as an engineered barrier of a near-surface disposal facility for low and very low-level radioactive waste is composed of a multi-layer to isolate radioactive waste from environmental influences for the long term. To acquire a realistic forecast for the post-closure period of the disposal facility, it is essential to carry out long-term experimental research in a similar condition to the actual disposal environment. Hence, a performance test facility of the disposal cover was constructed in Gyeongju low and intermediate level radioactive waste disposal center in 2022. The constructed performance test facility has differences from the material properties presented in the design. These differences are factors that affect the prevent rainfall infiltration, which is one of the important roles of the disposal cover. Therefore, in this study, a numerical simulation of rainfall infiltration into the performance test facility was performed for the designed case and the actual constructed case. To simulate the behavior of water infiltration, the FEFLOW software based on the finite element method is used. Through the analysis of numerical simulation results, it is confirmed that the hydraulic conductivity of the material constituting the multi-layer of the disposal cover greatly influences the amount of water infiltration.

A Study on the Application of EXPERT-CHOICE Technique for Selection of Optimal Decontamination Technology for Nuclear Power Plant of Decommissioning (원전 해체 시 최적 제염기술 선정을 위한 EXPERT-CHOICE 기법 적용에 대한 연구)

  • Song, Jong Soon;Shin, Seung Su;Lee, Sang Heon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.231-237
    • /
    • 2017
  • The present study researched and analyzed decontamination technology for decommissioning a nuclear power plant. The decision-making technique (EXPERT-CHOICE) was used to evaluate and select the optimal decontamination technology. In principle, this evaluation method is generally performed by a group of experts in the relevant field. The results of the weights were calculated by multiplying the weights with regard to each criterion and evaluation score. The evaluation scores were categorized into 3 ranges (high, medium, and low), and each range was weighted for differentiation. The level of the technology analysis was improved by additionally quantifying the weights with regard to each criterion and subdividing criteria into subcriteria. The basic assumption of the evaluation was that the weight values would decided on in an expert survey and assigned to each criterion. The evaluation criteria followed high weight for the 'High' range. Accordingly, H, M, and L were assigned weights of 10:5:1, respectively. This was based on the EXPERT-CHOICE optimal analysis. The minimum and maximum values were excluded, and the average value was used as the evaluation value for each scenario.