• Title/Summary/Keyword: Used aluminum can

Search Result 638, Processing Time 0.032 seconds

Recycling Technology of Aluminum UBC To Can Body Sheets

  • Lim, Cha-Yong;Kang, Seuk-Bong
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.173-178
    • /
    • 2001
  • The materials processing factors such as remelting and casting, heat treatment and microstructure, sheet rolling and can body forming in the aluminum can-to-can recycling procedure have been investigated. Aluminum used beverage can(UBC) was remelted together with virgin aluminum. The ceramic filter was used during casting to remove large impurities. As-cast microstructure was composed of large intermetallic compound (mainly $\beta$ -phase) distributed in the aluminum matrix. By heat treatment, $\beta$ -phase was transformed to $\alpha$ -phase which was also formed from $Mg_2$Si particles. The heat treated ingots were hot-rolled at 48$0^{\circ}C$ and cold-rolled to thin sheets. Can making from this thin sheets was successful and earing was measured after can making. There was a critical cold reduction rate for minimum earing. Some cracks were initiated from the impurity particles which was not removed during filtering.

  • PDF

The Present Status of Recycling Technology of Aluminum Can (알루미늄캔의 재활용(再活用) 기술현황(技術現況))

  • Lim, Cha-Yong;Kang, Suk-Bong
    • Resources Recycling
    • /
    • v.9 no.2
    • /
    • pp.3-10
    • /
    • 2000
  • Used aluminum beverage can(UBC) is an important secondary resource. Domestic recycling rate of UBC should be increased from the standpoint of resource savings and environmental protection. Aluminum can to can recycling is divided into two steps. The first step was composed of the processes such as collection of used beverage cans, shredding, magnetic separation, de-lacquring, melting and casting. The second is remelting and casting, heat treatment, hot and cold rolling, annealing, and can making. With brief discussion about this recycling technology, this article covers aluminum can consumption, the present state of aluminum can recycling in Korea, Japan, USA, and Europe.

  • PDF

Structural behavior of aluminum reticulated shell structures considering semi-rigid and skin effect

  • Liu, Hongbo;Chen, Zhihua;Xu, Shuai;Bu, Yidu
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.121-133
    • /
    • 2015
  • The aluminum dome has been widely used in natatorium, oil storage tank, power plant, coal, as well as other industrial buildings and structures. However, few research has focused on the structural behavior and design method of this dome. At present, most designs of aluminum alloy domes have referred to theories and methods of steel spatial structures. However, aluminum domes and steel domes have many differences, such as elasticity moduli, roof structures, and joint rigidities, which make the design and analysis method of steel spatial structures not fully suitable for aluminum alloy dome structures. In this study, a stability analysis method, which can consider structural imperfection, member initial curvature, semi-rigid joint, and skin effect, was presented and used to study the stability behavior of aluminum dome structures. In addition, some meaningful conclusions were obtained, which could be used in future designs and analyses of aluminum domes.

Surface Electrical Conductivity and Growth Behavior of Aluminum 3003 Oxide Film (알루미늄 3003 산화피막 성장 거동에 의한 표면 절연 특성 관찰)

  • Subin, Park;Chanyoung, Jeong
    • Corrosion Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.487-494
    • /
    • 2022
  • Anodizing is a typical electrochemical surface treatment method that can improve the corrosion and insulating properties of aluminum alloys. The anodization process can obtain a dense structure. It can be used to artificially grow the thickness of an anodization film. Aluminum 3003 alloy used in this study is the most commonly used alloy for batteries due to its high strength and excellent formability as well as its weldability and corrosion resistance. Aluminum 3003 alloy was anodized at 0 ℃ with 0.3 M oxalic acid at 20 V, 40 V, or 60 V for 1 hour, 6 hours, or 12 hours. As a result of analyzing the composition of each specimen with an Energy Dispersive Spectrometer (EDS), aluminum was converted into an oxide film. The thickness of the formed anodization film increased when the applied voltage and anodization time increased. High corrosion potential values and low corrosion current density values were observed for the thickest oxide layer. The anodization film formed by anodization acted as a protective layer. The electrical resistance increased as the applied voltage and anodization time increased.

Fabrication of Aluminum Foams for High Profit Recycling of Aluminum Can Scraps (알루미늄 캔 스크랩의 고품위 재활용을 위한 발포금속의 제조)

  • Ha, Won;Kim, Shae-Kwang;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.25 no.5
    • /
    • pp.203-208
    • /
    • 2005
  • The main emphasis of this study is to optimize the process variables for manufacturing aluminum foam materials by direct foaming of remelted aluminum scraps. Aluminum foams were fabricated from two different raw materials, pure aluminum and used beverage cans. For both cases, $TiH_{2}$ was used as a foaming agent. Calcium was added as a thickener for the foaming of pure aluminum and no thickener was added for that of used beverage Cans because the pre-existing oxides of the used beverage cans are used as a thickener. Calcium and $TiH_{2}$ content varies from 0.5wt.% to 2.0wt.% and from 0.5wt.% to 1.5wt.%, respectively. The processing conditions, such as the effect of calcium on the melt viscosity, foaming temperature, and the optimum amount of the foaming agent with regard to the melt viscosity were discussed.

Aluminum particle ignition characteristics at high pressure condition up to 2 GPa (최대 2 GPa 고압 환경에서 알루미늄 입자의 점화 특성 연구)

  • Lee, Kyung-Cheol;Taira, Tsubasa;Koo, Goon Mo;Lee, Jae Young;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.5-8
    • /
    • 2013
  • The ignition of aluminum particles under high pressure and temperature conditions is studied. The laser ablation method is used to generate aluminum particles exposed to pressures ranging between 0.35 and 2.2 GPa. A continuous wave $CO_2$ laser is then used to heat surface of the aluminum target until ignition is achieved. We confirm ignition by a spectroscopic analysis of AlO vibronic band of 484 nm wavelength. The radiant temperature is measured with respect to various pressures for tracing of required heating energy for ignition. Then the ignition temperature is deduced from the radiant temperature using the thermal diffusion equation. The established ignition criteria for corresponding temperature and pressure can be used in the modeling of detonation behavior of heavily aluminized high explosives or solid propellants.

  • PDF

A Study on Development of Automobile Interior Parts through Al-Insert Injection Moulding (Al-Insert 사출성형을 이용한 자동차 내장재 부품 개발에 관한 연구)

  • Lho T.J.;Kim J.Y.;Kang D.J.;Kim J.H.;Kim G.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.170-175
    • /
    • 2005
  • Generally, Aluminum is superior to durability, light, and characteristics of the material are embossed luminant. So, these characteristics of aluminum will be used automobile interior parts by aluminum injection moulding. Especially, The external of Aluminum plate is engraved differing pattern by roller working. This working can use any longer and be seen gracefully. This is the reason why aluminum insert moulding is used. This feature of research can be characterized by simple process to customize aluminum sheet of blanking and forming process with internal parts of configuration if products are injected by aluminum sheet. Besides, to analysis completed Automobile interior parts to be concerned volumetric shrinkage, best gate location, fill time analysis and so on through the mold-flow before the aluminum insert moulding is worked.

  • PDF

Comparison of Hydrophobicity and Corrosion Properties of Aluminum 5052 and 6061 Alloys After Anodized Surface Treatment (알루미늄 5052 및 6061 합금의 양극산화 표면처리를 통한 발수 특성 및 부식 특성 비교)

  • Park, Youngju;Jeong, Chanyoung
    • Corrosion Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.200-208
    • /
    • 2022
  • Aluminum alloy is used by adding various elements according to the needs of the industry. Aluminum alloys such as 5052 and 6061 are known to possess excellent corrosion resistance by adding Mg. Despite their excellent physical properties, corrosion can occur. To solve this problem, an anodization technique generally can improve corrosion resistance by forming an oxide structure with maximized hydrophobic properties through coatings. In this study, the anodizing technique was used to improve the hydrophobicity of aluminum 5052 and 6061 by creating porous nanostructures on top of the surface. An oxide film was formed by applying anodizing voltages of 20, 40, 60, 80, and 100 V to aluminum alloys followed by immersion in 0.1 M phosphoric acid for 30 minutes to expand oxide pores. Contact angle and corrosion characteristics were different according to the structure after anodization. For the 5052 aluminum, the corrosion potential was improved from -363 mV to -154 mV as the contact angle increased from 116° to 136°. For the 6061 aluminum, the corrosion potential improved from -399 mV to -124 mV when the contact angle increased from 116° to 134°.

Effects of Environmental Variables on Hydrogen Generation from Alkaline Solutions using used Aluminum Cans (알칼리 용액에서 알루미늄 재활용 캔을 이용한 수소생산에 미치는 환경 인자의 영향)

  • Yun, Kwi-Sub;Park, Chan-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.1
    • /
    • pp.29-34
    • /
    • 2011
  • This study examined the effect of environmental variables, such as the NaOH concentration and solution temperature, on the rate of hydrogen generation from NaOH solutions through the corrosion of used aluminum cans as a potential candidate material for the safe and economic production of hydrogen. Corrosion of the used aluminum cans was promoted by increasing the NaOH concentration and solution temperature because of the loss of aluminum passivity. The measured rate of hydrogen generation from the NaOH solutions increased with increasing NaOH concentration due to the catalytic activity of NaOH in the hydrolysis process. However, at higher solution temperatures, the rate of hydrogen generation rate was less affected by the NaOH concentration than that at lower temperature.

Current Status of Domestic Recycling of Used Metallic Can (국내 금속캔 리싸이클링 현황)

  • Park, Hyungkyu;Shin, Shunmyung
    • Resources Recycling
    • /
    • v.23 no.5
    • /
    • pp.62-67
    • /
    • 2014
  • Used metallic can should be recycled from the point of view of environmental preservation and resource recycling. Metallic can is one of EPR items, and classified into steel can and aluminum can according to the can body material. In Korea about eighty percent of metallic cans are made of steel. In this article, production of cans and current status on domestic recycling of used metallic cans in recent years(2008-2012) were surveyed. Recycled ratio by weight of used steel and aluminum cans was about 80.8% and 81.8%, respectively in 2012. Totally it reached 81.8%.