Browse > Article
http://dx.doi.org/10.14773/cst.2022.21.6.487

Surface Electrical Conductivity and Growth Behavior of Aluminum 3003 Oxide Film  

Subin, Park (Department of Advanced Materials Engineering, Dong-eui University)
Chanyoung, Jeong (Department of Advanced Materials Engineering, Dong-eui University)
Publication Information
Corrosion Science and Technology / v.21, no.6, 2022 , pp. 487-494 More about this Journal
Abstract
Anodizing is a typical electrochemical surface treatment method that can improve the corrosion and insulating properties of aluminum alloys. The anodization process can obtain a dense structure. It can be used to artificially grow the thickness of an anodization film. Aluminum 3003 alloy used in this study is the most commonly used alloy for batteries due to its high strength and excellent formability as well as its weldability and corrosion resistance. Aluminum 3003 alloy was anodized at 0 ℃ with 0.3 M oxalic acid at 20 V, 40 V, or 60 V for 1 hour, 6 hours, or 12 hours. As a result of analyzing the composition of each specimen with an Energy Dispersive Spectrometer (EDS), aluminum was converted into an oxide film. The thickness of the formed anodization film increased when the applied voltage and anodization time increased. High corrosion potential values and low corrosion current density values were observed for the thickest oxide layer. The anodization film formed by anodization acted as a protective layer. The electrical resistance increased as the applied voltage and anodization time increased.
Keywords
Aluminum 3003 alloy; Insulation properties; Anodization processes; Corrosion resistance; Battery;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 C. Jeong and C. H. Choi, Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior superhydrophobic efficiency, ACS applied materials & interfaces, 4, 842 (2012). Doi: https://doi.org/10.1021/am201514n   DOI
2 Y. Alivov, M. Pandikunta, S. Nikishin and Z. Y. Fan, The anodization voltage influence on the properties of TiO2 nanotubes grown by electrochemical oxidation, Nanotechnology, 20, 225602 (2009). Doi: https://doi.org/10.1088/0957-4484/20/22/225602   DOI
3 K. S. Choudhari, C. H. Choi, S. Chidangil and S. D. George, Recent Progress in the Fabrication and Optical Properties of Nanoporous Anodic Alumina, Nanomaterials, 12, 444 (2022). Doi: https://doi.org/10.3390/nano12030444   DOI
4 C. Jeong, A Study on Functional Hydrophobic Stainless Steel 316L Using Single-Step Anodization and a Self-Assembled Monolayer Coating to Improve Corrosion Resistance, Coatings, 12, 395 (2022). Doi: https://doi.org/10.3390/coatings12030395   DOI
5 C. Blawert, W. Dietzel, E. Ghali and G. Song, Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments, Advanced Engineering Materials, 8, 511 (2006). Doi: https://doi.org/10.1002/adem.200500257   DOI
6 Y. Ma, X. Zhou, Y. Liao, X. Chen, C. Zhang, H. Wu, ... and W. Huang, Effect of anodizing parameters on film morphology and corrosion resistance of AA2099 aluminum-lithium alloy, Journal of The Electrochemical Society, 163, C369 (2016). Doi: https://doi.org/10.1149/2.1081607jes   DOI
7 Z. Szklarska-Smialowska, Pitting corrosion of aluminum, Corrosion science, 41, 1743 (1999). Doi: https://doi.org/10.1016/S0010-938X(99)00012-8   DOI
8 J. Kim and C. Jeong, Study of surface properties and corrosion behavior of functional aluminum 3003 alloy using anodic oxidation method, Corrosion Science and Technology, 21, 290 (2022). Doi: https://doi.org/10.14773/cst.2022.21.4.290   DOI
9 V. N. Kale, J. Rajesh, T. Maiyalagan, C. W. Lee and R. M. Gnanamuthu, Fabrication of Ni-Mg-Ag alloy electrodeposited material on the aluminium surface using anodizing technique and their enhanced corrosion resistance for engineering application, Materials Chemistry and Physics, 282, 125900 (2022). Doi: https://doi.org/10.1016/j.matchemphys.2022.125900   DOI
10 S. U. Ofoegbu, F. A. Fernandes and A. B. Pereira, The sealing step in aluminum anodizing: A focus on sustainable strategies for enhancing both energy efficiency and corrosion resistance, Coatings, 10, 226 (2020). Doi: https://doi.org/10.3390/coatings10030226   DOI
11 Y. Choi and C. Jeong. Study of anodized film growth behavior and corrosion damage over anodization time of aluminum 1050 alloy, Corrosion Science and Technology, 21, 282 (2022). Doi: https://doi.org/10.14773/cst.2022.21.4.282   DOI
12 Z. Zhang, J. G. Shan, X. H. Tan and J. Zhang, Effect of anodizing pretreatment on laser joining CFRP to aluminum alloy A6061, International journal of adhesion and adhesives, 70, 142 (2016). Doi: https://doi.org/10.1016/j.ijadhadh.2016.06.007   DOI
13 Y. Park and C. Jeong, Correlation of Surface Oxide Film Growth with Corrosion Resistance of Stainless Steel, Corrosion Science and Technology, 20, 152 (2021). Doi: https://doi.org/10.14773/cst.2021.20.3.152   DOI
14 Y. Suzuki, K. Kawahara, T. Kikuchi, R. O. Suzuki and S. Natsui, Corrosion-resistant porous alumina formed via anodizing aluminum in etidronic acid and its pore-sealing behavior in boiling water, Journal of The Electro-chemical Society, 166, C261 (2019). Doi: https://doi.org/10.1149/2.0221912jes   DOI
15 Y. Xu, G. E. Thompson and G. C. Wood, Mechanism of anodic film growth on aluminium, Transactions of the IMF, 63, 98 (1985). Doi: https://doi.org/10.1080/00202967.1985.11870715   DOI
16 C. Jeong and H. Ji, Systematic control of anodic aluminum oxide nanostructures for enhancing the superhydrophobicity of 5052 aluminum alloy, Materials, 12, 3231 (2019). Doi: https://doi.org/10.3390/ma12193231   DOI
17 J. Li, H. Wei, K. Zhao, M. Wang, D. Chen and M. Chen, Effect of anodizing temperature and organic acid addition on the structure and corrosion resistance of anodic aluminum oxide films. Thin Solid Films, 713, 138359 (2020). Doi: https://doi.org/10.1016/j.tsf.2020.138359   DOI
18 S. J. Lee and S. J. Kim, Essential anti-corrosive behavior of anodized Al alloy by applied current density, Applied Surface Science, 481, 637 (2019). Doi: https://doi.org/10.1016/j.apsusc.2019.03.155   DOI
19 H. Ji and C. Jeong, Study on corrosion and oxide growth behavior of anodized aluminum 5052 Alloy, Journal of the Korean institute of surface engineering, 51, 372 (2018). Doi: https://doi.org/10.5695/JKISE.2018.51.6.372   DOI
20 C. L. Ban, F. R. Wang, J. H. Chen, Z. Q. Liu, Effect of Hydration on Microstructure and Property of Anodized Oxide Film for Aluminum Electrolytic Capacitor, Journal of Materials Science: Materials in Electronics, 29, 16166 (2018). Doi: https://doi.org/10.1007/s10854-018-9705-9   DOI
21 Q. Y. Yang, Y. L. Zhou, Y. B. Tan, S. Xiang, M. Ma, and F. Zhao, Effects of microstructure, texture evolution and strengthening mechanisms on mechanical properties of 3003 aluminum alloy during cryogenic rolling, Journal of Alloys and Compounds, 884, 161135 (2021). Doi: https://doi.org/10.1016/j.jallcom.2021.161135   DOI
22 H. Yang, Y. Gao, W. Qin, J. Sun, Z. Huang, Y. Li, J. Sun, A robust superhydrophobic surface on AA3003 aluminum alloy with intermetallic phases in-situ pinning effect for corrosion protection, Journal of Alloys and Compounds, 898, 163038 (2022). Doi: https://doi.org/10.1016/j.jallcom.2021.163038   DOI
23 H. Yang, Y. Gao, W. Qin, Y. Li, Microstructure and corrosion behavior of electroless Ni-P on sprayed Al-Ce coating of 3003 aluminum alloy, Surface and Coatings Technology, 281, 176 (2015). Doi: https://doi.org/10.1016/j.surfcoat.2015.10.001   DOI
24 L. Bouchama, N. Azzouz, N. Boukmouche, J. P. Chopart, A. L. Daltin, Y. Bouznit, Enhancing aluminum corrosion resistance by two-step anodizing process, Surface and Coatings Technology, 235, 676 (2013). Doi: https://doi.org/10.1016/j.surfcoat.2013.08.046   DOI
25 Y. Zuo, P. H. Zhao, J. M. Zhao, The influences of sealing methods on corrosion behavior of anodized aluminum alloys in NaCl solutions, Surface and Coatings Technology, 166, 237 (2003). Doi: https://doi.org/10.1016/S0257-8972(02)00779-X   DOI
26 A. S. Darmawan, T. W. B. Riyadi, A. Hamid, B. W. Febriantoko, B. S. Putra, Corrosion Resistance Improvement of Aluminum under Anodizing Process, AIP Conference Proceedings, 1977, 020006 (2018). Doi: https://doi.org/10.1063/1.5042862   DOI
27 A. Voltes-Dorta, J. Perdiguero and J. L. Jimenez, Are car manufacturers on the way to reduce CO2 emissions. A DEA approach, Energy Economics, 38, 77 (2013). Doi: https://doi.org/10.1016/j.eneco.2013.03.005   DOI
28 A. Ajanovic, R. Haas, Dissemination of electric vehicles in urban areas: Major factors for success, Energy, 115, 1451 (2016). Doi: https://doi.org/10.1016/j.energy.2016.05.040   DOI
29 H. Ma, F. Balthasar, N. Tait, X. Riera-Palou, A. Harrison, A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles. Energy policy, 44, 160 (2012). Doi: https://doi.org/10.1016/j.enpol.2012.01.034   DOI
30 W. Kempton, S. E. Letendre, Electric vehicles as a new power source for electric utilities, Transportation Research Part D: Transport and Environment, 2, 157 (1997). Doi: https://doi.org/10.1016/S1361-9209(97)00001-1   DOI
31 A. M. Andwari, A. Pesiridis, S. Rajoo, R. MartinezBotas, V. Esfahanian, A review of Battery Electric Vehicle technology and readiness levels, Renewable and Sustainable Energy Reviews, 78, 414 (2017). Doi: https://doi.org/10.1016/j.rser.2017.03.138   DOI
32 F. Simchen, M. Sieber, A. Kopp, T. Lampke, Introduction to plasma electrolytic oxidation-An overview of the process and applications, Coatings, 10, 628 (2020). Doi: https://doi.org/10.3390/coatings10070628   DOI
33 S. Moon and Y. Jeong, Generation mechanism of microdischarges during plasma electrolytic oxidation of Al in aqueous solutions, Corrosion Science, 51, 1506 (2009). Doi: https://doi.org/10.1016/j.corsci.2008.10.039   DOI
34 J. G. Buijnsters, R. Zhong, N. Tsyntsaru, J. P. Celis, Surface wettability of macroporous anodized aluminum oxide, ACS applied materials & interfaces, 5, 3224 (2013). Doi: https://doi.org/10.1021/am4001425   DOI
35 L. Bouchama, N. Azzouz, N. Boukmouche, J. P. Chopart, A. L. Daltin, Y. Bouznit, Enhancing aluminum corrosion resistance by two-step anodizing process, Surface and Coatings Technology, 235, 676 (2013). Doi: https://doi.org/10.1016/j.surfcoat.2013.08.046   DOI
36 S. Lin, H. Greene, H. Shih, F. Mansfeld, Corrosion protection of Al/SiC metal matrix composites by anodizing, Corrosion, 48, 61 (1992). Doi: https://doi.org/10.5006/1.3315920   DOI
37 C. Jeong, J. Lee, K. Sheppard and C. H. Choi, Air-impregnated nanoporous anodic aluminum oxide layers for enhancing the corrosion resistance of aluminum, Langmuir, 31, 11040 (2015). Doi: https://doi.org/10.1021/acs.langmuir.5b02392   DOI
38 J. M. Montero-Moreno, M. Sarret, C. Muller, Influence of the aluminum surface on the final results of a two-step anodizing, Surface and Coatings Technology, 201, 6352 (2007). Doi: https://doi.org/10.1016/j.surfcoat.2006.12.003   DOI
39 S. H. Kim and C. Jeong, Feasibility of Machine Learning Algorithms for Predicting the Deformation of Anodic Titanium Films by Modulating Anodization Processes, Materials, 14, 1089 (2021). Doi: https://doi.org/10.3390/ma14051089   DOI
40 Y. Huang, H. Shih, H. Huang, J. Daugherty, S. Wu, S. Ramanathan, ... and F. Mansfeld, Evaluation of the corrosion resistance of anodized aluminum 6061 using electrochemical impedance spectroscopy (EIS), Corrosion Science, 50, 3569 (2008). Doi: https://doi.org/10.1016/j.corsci.2008.09.008   DOI
41 C. J. Donahue, J. A. Exline, Anodizing and coloring aluminum alloys, Journal of Chemical Education, 91, 711 (2014). Doi: https://doi.org/10.1021/ed3005598   DOI