1 |
C. Jeong and C. H. Choi, Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior superhydrophobic efficiency, ACS applied materials & interfaces, 4, 842 (2012). Doi: https://doi.org/10.1021/am201514n
DOI
|
2 |
Y. Alivov, M. Pandikunta, S. Nikishin and Z. Y. Fan, The anodization voltage influence on the properties of TiO2 nanotubes grown by electrochemical oxidation, Nanotechnology, 20, 225602 (2009). Doi: https://doi.org/10.1088/0957-4484/20/22/225602
DOI
|
3 |
K. S. Choudhari, C. H. Choi, S. Chidangil and S. D. George, Recent Progress in the Fabrication and Optical Properties of Nanoporous Anodic Alumina, Nanomaterials, 12, 444 (2022). Doi: https://doi.org/10.3390/nano12030444
DOI
|
4 |
C. Jeong, A Study on Functional Hydrophobic Stainless Steel 316L Using Single-Step Anodization and a Self-Assembled Monolayer Coating to Improve Corrosion Resistance, Coatings, 12, 395 (2022). Doi: https://doi.org/10.3390/coatings12030395
DOI
|
5 |
C. Blawert, W. Dietzel, E. Ghali and G. Song, Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments, Advanced Engineering Materials, 8, 511 (2006). Doi: https://doi.org/10.1002/adem.200500257
DOI
|
6 |
Y. Ma, X. Zhou, Y. Liao, X. Chen, C. Zhang, H. Wu, ... and W. Huang, Effect of anodizing parameters on film morphology and corrosion resistance of AA2099 aluminum-lithium alloy, Journal of The Electrochemical Society, 163, C369 (2016). Doi: https://doi.org/10.1149/2.1081607jes
DOI
|
7 |
Z. Szklarska-Smialowska, Pitting corrosion of aluminum, Corrosion science, 41, 1743 (1999). Doi: https://doi.org/10.1016/S0010-938X(99)00012-8
DOI
|
8 |
J. Kim and C. Jeong, Study of surface properties and corrosion behavior of functional aluminum 3003 alloy using anodic oxidation method, Corrosion Science and Technology, 21, 290 (2022). Doi: https://doi.org/10.14773/cst.2022.21.4.290
DOI
|
9 |
V. N. Kale, J. Rajesh, T. Maiyalagan, C. W. Lee and R. M. Gnanamuthu, Fabrication of Ni-Mg-Ag alloy electrodeposited material on the aluminium surface using anodizing technique and their enhanced corrosion resistance for engineering application, Materials Chemistry and Physics, 282, 125900 (2022). Doi: https://doi.org/10.1016/j.matchemphys.2022.125900
DOI
|
10 |
S. U. Ofoegbu, F. A. Fernandes and A. B. Pereira, The sealing step in aluminum anodizing: A focus on sustainable strategies for enhancing both energy efficiency and corrosion resistance, Coatings, 10, 226 (2020). Doi: https://doi.org/10.3390/coatings10030226
DOI
|
11 |
Y. Choi and C. Jeong. Study of anodized film growth behavior and corrosion damage over anodization time of aluminum 1050 alloy, Corrosion Science and Technology, 21, 282 (2022). Doi: https://doi.org/10.14773/cst.2022.21.4.282
DOI
|
12 |
Z. Zhang, J. G. Shan, X. H. Tan and J. Zhang, Effect of anodizing pretreatment on laser joining CFRP to aluminum alloy A6061, International journal of adhesion and adhesives, 70, 142 (2016). Doi: https://doi.org/10.1016/j.ijadhadh.2016.06.007
DOI
|
13 |
Y. Park and C. Jeong, Correlation of Surface Oxide Film Growth with Corrosion Resistance of Stainless Steel, Corrosion Science and Technology, 20, 152 (2021). Doi: https://doi.org/10.14773/cst.2021.20.3.152
DOI
|
14 |
Y. Suzuki, K. Kawahara, T. Kikuchi, R. O. Suzuki and S. Natsui, Corrosion-resistant porous alumina formed via anodizing aluminum in etidronic acid and its pore-sealing behavior in boiling water, Journal of The Electro-chemical Society, 166, C261 (2019). Doi: https://doi.org/10.1149/2.0221912jes
DOI
|
15 |
Y. Xu, G. E. Thompson and G. C. Wood, Mechanism of anodic film growth on aluminium, Transactions of the IMF, 63, 98 (1985). Doi: https://doi.org/10.1080/00202967.1985.11870715
DOI
|
16 |
C. Jeong and H. Ji, Systematic control of anodic aluminum oxide nanostructures for enhancing the superhydrophobicity of 5052 aluminum alloy, Materials, 12, 3231 (2019). Doi: https://doi.org/10.3390/ma12193231
DOI
|
17 |
J. Li, H. Wei, K. Zhao, M. Wang, D. Chen and M. Chen, Effect of anodizing temperature and organic acid addition on the structure and corrosion resistance of anodic aluminum oxide films. Thin Solid Films, 713, 138359 (2020). Doi: https://doi.org/10.1016/j.tsf.2020.138359
DOI
|
18 |
S. J. Lee and S. J. Kim, Essential anti-corrosive behavior of anodized Al alloy by applied current density, Applied Surface Science, 481, 637 (2019). Doi: https://doi.org/10.1016/j.apsusc.2019.03.155
DOI
|
19 |
H. Ji and C. Jeong, Study on corrosion and oxide growth behavior of anodized aluminum 5052 Alloy, Journal of the Korean institute of surface engineering, 51, 372 (2018). Doi: https://doi.org/10.5695/JKISE.2018.51.6.372
DOI
|
20 |
C. L. Ban, F. R. Wang, J. H. Chen, Z. Q. Liu, Effect of Hydration on Microstructure and Property of Anodized Oxide Film for Aluminum Electrolytic Capacitor, Journal of Materials Science: Materials in Electronics, 29, 16166 (2018). Doi: https://doi.org/10.1007/s10854-018-9705-9
DOI
|
21 |
Q. Y. Yang, Y. L. Zhou, Y. B. Tan, S. Xiang, M. Ma, and F. Zhao, Effects of microstructure, texture evolution and strengthening mechanisms on mechanical properties of 3003 aluminum alloy during cryogenic rolling, Journal of Alloys and Compounds, 884, 161135 (2021). Doi: https://doi.org/10.1016/j.jallcom.2021.161135
DOI
|
22 |
H. Yang, Y. Gao, W. Qin, J. Sun, Z. Huang, Y. Li, J. Sun, A robust superhydrophobic surface on AA3003 aluminum alloy with intermetallic phases in-situ pinning effect for corrosion protection, Journal of Alloys and Compounds, 898, 163038 (2022). Doi: https://doi.org/10.1016/j.jallcom.2021.163038
DOI
|
23 |
H. Yang, Y. Gao, W. Qin, Y. Li, Microstructure and corrosion behavior of electroless Ni-P on sprayed Al-Ce coating of 3003 aluminum alloy, Surface and Coatings Technology, 281, 176 (2015). Doi: https://doi.org/10.1016/j.surfcoat.2015.10.001
DOI
|
24 |
L. Bouchama, N. Azzouz, N. Boukmouche, J. P. Chopart, A. L. Daltin, Y. Bouznit, Enhancing aluminum corrosion resistance by two-step anodizing process, Surface and Coatings Technology, 235, 676 (2013). Doi: https://doi.org/10.1016/j.surfcoat.2013.08.046
DOI
|
25 |
Y. Zuo, P. H. Zhao, J. M. Zhao, The influences of sealing methods on corrosion behavior of anodized aluminum alloys in NaCl solutions, Surface and Coatings Technology, 166, 237 (2003). Doi: https://doi.org/10.1016/S0257-8972(02)00779-X
DOI
|
26 |
A. S. Darmawan, T. W. B. Riyadi, A. Hamid, B. W. Febriantoko, B. S. Putra, Corrosion Resistance Improvement of Aluminum under Anodizing Process, AIP Conference Proceedings, 1977, 020006 (2018). Doi: https://doi.org/10.1063/1.5042862
DOI
|
27 |
A. Voltes-Dorta, J. Perdiguero and J. L. Jimenez, Are car manufacturers on the way to reduce CO2 emissions. A DEA approach, Energy Economics, 38, 77 (2013). Doi: https://doi.org/10.1016/j.eneco.2013.03.005
DOI
|
28 |
A. Ajanovic, R. Haas, Dissemination of electric vehicles in urban areas: Major factors for success, Energy, 115, 1451 (2016). Doi: https://doi.org/10.1016/j.energy.2016.05.040
DOI
|
29 |
H. Ma, F. Balthasar, N. Tait, X. Riera-Palou, A. Harrison, A new comparison between the life cycle greenhouse gas emissions of battery electric vehicles and internal combustion vehicles. Energy policy, 44, 160 (2012). Doi: https://doi.org/10.1016/j.enpol.2012.01.034
DOI
|
30 |
W. Kempton, S. E. Letendre, Electric vehicles as a new power source for electric utilities, Transportation Research Part D: Transport and Environment, 2, 157 (1997). Doi: https://doi.org/10.1016/S1361-9209(97)00001-1
DOI
|
31 |
A. M. Andwari, A. Pesiridis, S. Rajoo, R. MartinezBotas, V. Esfahanian, A review of Battery Electric Vehicle technology and readiness levels, Renewable and Sustainable Energy Reviews, 78, 414 (2017). Doi: https://doi.org/10.1016/j.rser.2017.03.138
DOI
|
32 |
F. Simchen, M. Sieber, A. Kopp, T. Lampke, Introduction to plasma electrolytic oxidation-An overview of the process and applications, Coatings, 10, 628 (2020). Doi: https://doi.org/10.3390/coatings10070628
DOI
|
33 |
S. Moon and Y. Jeong, Generation mechanism of microdischarges during plasma electrolytic oxidation of Al in aqueous solutions, Corrosion Science, 51, 1506 (2009). Doi: https://doi.org/10.1016/j.corsci.2008.10.039
DOI
|
34 |
J. G. Buijnsters, R. Zhong, N. Tsyntsaru, J. P. Celis, Surface wettability of macroporous anodized aluminum oxide, ACS applied materials & interfaces, 5, 3224 (2013). Doi: https://doi.org/10.1021/am4001425
DOI
|
35 |
L. Bouchama, N. Azzouz, N. Boukmouche, J. P. Chopart, A. L. Daltin, Y. Bouznit, Enhancing aluminum corrosion resistance by two-step anodizing process, Surface and Coatings Technology, 235, 676 (2013). Doi: https://doi.org/10.1016/j.surfcoat.2013.08.046
DOI
|
36 |
S. Lin, H. Greene, H. Shih, F. Mansfeld, Corrosion protection of Al/SiC metal matrix composites by anodizing, Corrosion, 48, 61 (1992). Doi: https://doi.org/10.5006/1.3315920
DOI
|
37 |
C. Jeong, J. Lee, K. Sheppard and C. H. Choi, Air-impregnated nanoporous anodic aluminum oxide layers for enhancing the corrosion resistance of aluminum, Langmuir, 31, 11040 (2015). Doi: https://doi.org/10.1021/acs.langmuir.5b02392
DOI
|
38 |
J. M. Montero-Moreno, M. Sarret, C. Muller, Influence of the aluminum surface on the final results of a two-step anodizing, Surface and Coatings Technology, 201, 6352 (2007). Doi: https://doi.org/10.1016/j.surfcoat.2006.12.003
DOI
|
39 |
S. H. Kim and C. Jeong, Feasibility of Machine Learning Algorithms for Predicting the Deformation of Anodic Titanium Films by Modulating Anodization Processes, Materials, 14, 1089 (2021). Doi: https://doi.org/10.3390/ma14051089
DOI
|
40 |
Y. Huang, H. Shih, H. Huang, J. Daugherty, S. Wu, S. Ramanathan, ... and F. Mansfeld, Evaluation of the corrosion resistance of anodized aluminum 6061 using electrochemical impedance spectroscopy (EIS), Corrosion Science, 50, 3569 (2008). Doi: https://doi.org/10.1016/j.corsci.2008.09.008
DOI
|
41 |
C. J. Donahue, J. A. Exline, Anodizing and coloring aluminum alloys, Journal of Chemical Education, 91, 711 (2014). Doi: https://doi.org/10.1021/ed3005598
DOI
|