DOI QR코드

DOI QR Code

Comparison of Hydrophobicity and Corrosion Properties of Aluminum 5052 and 6061 Alloys After Anodized Surface Treatment

알루미늄 5052 및 6061 합금의 양극산화 표면처리를 통한 발수 특성 및 부식 특성 비교

  • Park, Youngju (Department of Advanced Materials Engineering, Dong-eui University) ;
  • Jeong, Chanyoung (Department of Advanced Materials Engineering, Dong-eui University)
  • 박영주 (동의대학교신소재공학과) ;
  • 정찬영 (동의대학교신소재공학과)
  • Received : 2022.05.29
  • Accepted : 2022.06.15
  • Published : 2022.06.30

Abstract

Aluminum alloy is used by adding various elements according to the needs of the industry. Aluminum alloys such as 5052 and 6061 are known to possess excellent corrosion resistance by adding Mg. Despite their excellent physical properties, corrosion can occur. To solve this problem, an anodization technique generally can improve corrosion resistance by forming an oxide structure with maximized hydrophobic properties through coatings. In this study, the anodizing technique was used to improve the hydrophobicity of aluminum 5052 and 6061 by creating porous nanostructures on top of the surface. An oxide film was formed by applying anodizing voltages of 20, 40, 60, 80, and 100 V to aluminum alloys followed by immersion in 0.1 M phosphoric acid for 30 minutes to expand oxide pores. Contact angle and corrosion characteristics were different according to the structure after anodization. For the 5052 aluminum, the corrosion potential was improved from -363 mV to -154 mV as the contact angle increased from 116° to 136°. For the 6061 aluminum, the corrosion potential improved from -399 mV to -124 mV when the contact angle increased from 116° to 134°.

Keywords

References

  1. K. Olkowicz, Z. Buczko, B. Nasilowska, K. Kowalczyk, J. Czwartos, Superhydrophobic Coating Based on Porous Aluminum Oxide Modified by Polydimethylsiloxane (PDMS), Materials, 15, 1042 (2022). Doi: https://doi.org/10.3390/ma15031042
  2. C. Jeong, C. H. Choi, Single-Step Direct Fabrication of Pillar-on-Pore Hybrid Nanostructures in Anodizing Aluminum for Superior Superhydrophobic Efficiency. ACS Applied Materials & Interfaces, 4, 842 (2012). Doi: https://doi.org/10.1021/am201514n
  3. Y. Kim, W. Hwang, H. Cho, J. W. Lee, A study on the minute change of the alumina surface structure according to the anodizing conditions for the production of a robust wettability-modified surfaces, Surface & Coatings Technology, 439, 128453 (2022). Doi: https://doi.org/10.1016/j.surfcoat.2022.128453
  4. C. Jeong, A Study on Functional Hydrophobic Stainless Steel 316L Using Single-Step Anodization and a Self-Assembled Monolayer Coating to Improve Corrosion Resistance, Coatings, 12, 395 (2022). Doi: https://doi.org/10.3390/coatings12030395
  5. G. D. Sulka, Chapter on-Introduction to anodization of metalsm Nanostructured Anodic Metal Oxides, p. 1, (2020). Doi: https://doi.org/10.1016/B978-0-12-816706-9.00001-7
  6. J. G. Carrillo, W. J. Cantwell, Mechanical properties of a novel fiber-metal laminate based on a polypropylene composite, Mechanics of Materials, 41, 828 (2009). Doi: https://doi.org/10.1016/j.mechmat.2009.03.002
  7. L. Ferrante, F. Sarasini, J. Tirillo, L. Lampani, T. Valente. P. Gaudenzi, Low velocity impact response of basalt-aluminium fibre metal laminates, Materials and Design, 98, 98 (2016). Doi: https://doi.org/10.1016/j.matdes.2016.03.002
  8. C. Blawert, W. Dietzel, E. Ghali, G. Song, Anodizing Treatments for Magnesium Alloys and Their Effect on Corrosion Resistance in Various Environments, Advanced engineering materials, 8, 511 (2006). Doi: https://doi.org/10.1002/adem.200500257
  9. K. K. Lau, J. Bico, K. B. Teo, M. Chhowalla, G. A. Amaratunga, W. I. Milne, K. K. Gleason, Superhydrophobic Carbon Nanotube Forests Nano Letters, 3, 1701 (2003). Doi: https://doi.org/10.1021/nl034704t
  10. D. T. H. Hue, V. K. Tran, V. L. Nguyen, V. H. Dinh, T. G. Nguyen, High strain-rate effect on microstructure evolution and plasticity of aluminum 5052 alloy nano-multilayer: A molecular dynamics study, Vacuum, 201, 111104 (2022). Doi: https://doi.org/10.1016/j.vacuum.2022.111104
  11. J. L. Trompette, L. Arurault; S. Fontorbes, L. Massot, Influence of the anion specificity on the electrochemical corrosion of anodized aluminum substrates, Electrochimica Acta, 55, 2901 (2010). Doi: https://doi.org/10.1016/j.electacta.2009.12.063
  12. X. J. Feng, L. Jiang, Design and creation superwetting/ Antiwetting surfaces, Advanced Materials, 18, 3063 (2006). Doi: https://doi.org/10.1002/adma.200501961
  13. M. Kaseem, S. Fatimah, N. Nashrah Y. G. Ko, Recent progress in surface modification of metals coated by plasma electrolytic oxidation: Principle, structure, and performance, Progress in Materials Science, 117, 100735 (2021). Doi: https://doi.org/10.1016/j.pmatsci.2020.100735
  14. J. Y. Oh, E. M. Kim, G. S. Heo, D. H. Kim, D. Lee, H. C. Jeong, and D. S. Seo, Superior nanopatterns via adjustable nanoimprint lithography on aluminum oxide in highK thin films with ultraviolet curable polymer, Royal Society of Chemistry Advandces, 12, 88 (2022). Doi: https://doi.org/10.1039/D1RA08425A
  15. A. Z. Zakaria, K. Shelesh-nezhad, T. N. Chakherlou, A. Olad, Effects of aluminum surface treatments on the interfacial fracture toughness of carbon-fiber aluminum laminates, Engineering Fracture Mechanics, 172, 139 (2017). DOI: https://doi.org/10.1016/j.engfracmech.2017.01.004
  16. T. C. Cheng and C. C. Chou, The Electrical and Mechanical Properties of Porous Anodic 6061-T6 Aluminum Alloy Oxide Film, Journal of Nanomaterials, 2015, 141 (2015). Doi: https://doi.org/10.1155/2015/371405
  17. A. Rath, P. Theato, Advanced AAO Templating of Nanostructured Stimuli-Responsive Polymers: Hype or Hope?, Advanced functional materials, 30, 1902959 (2020). Doi: https://doi.org/10.1002/adfm.201902959
  18. H. Asoh and T. Sano, Forming Hard Anodic Films on Aluminum by Anodization in Oxalic Acid and Alcohol, Journal of The Electrochemical Society, 168, 103506 (2021). Doi: https://doi.org/10.1149/ 1945-7111/ac2ec1
  19. W. Lee, S.J. Park, Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures, Chemical Reviews, 114, 7487 (2014). Doi: https://doi.org/10.1021/cr500002z
  20. R. Imai, M. Tanaka, H. Hashimoto, H. Asoh, Facile synthesis of size- and shape-controlled freestanding Au nanohole arrays by sputter deposition using anodic porous alumina templates, Nanotechnology, 31, 415303 (2020). Doi: https://doi.org/10.1088/1361-6528/ab9f76
  21. C. K. Chung, T. Y. Liu, W. T. Chang, Effect of oxalic acid concentration on the formation of anodic aluminum oxide using pulse anodization at room temperature, Microsystem Technologies, 16, 1451 (2010). Doi: https://doi.org/10.1007/s00542-009-0944-9
  22. M. Franco, S. Anoop, R. Uma Rani, and A. K. Sharma, Porous layer characterization of anodized and black-anodized aluminium by electrochemical studies, International Scholarly Research Notices Corrosion, 2012, 1 (2012). Doi: https://doi.org/10.5402/2012/323676
  23. S. Kim, C. Jeong, Feasibility of Machine Learning Algorithms for Predicting the Deformation of Anodic Titanium Films by Modulating Anodization Processes, Materials, 14, 1089 (2021). Doi: https://doi.org/10.3390/ma14051089
  24. C. Jeong, Ph.D. Thesis, pp. 2 - 5, Stevens Institute of Technology, New Jersey (2013).
  25. H. Wang, D. Dai, X. Wu, Fabrication of superhydrophobic surfaces on aluminum, Applied Surface Science, 254, 5599 (2008). Doi: https://doi.org/10.1016/j.apsusc.2008.03.004
  26. K. Ellinas, P. Dimitrakellis, P. Sarkiris and E. Gogolides, A Review of Fabrication Methods, Properties and Applications of Superhydrophobic Metals, Processes, 9, 666 (2021). Doi: https://doi.org/10.3390/pr9040666
  27. C. Jeong, Observation of Diverse Aluminum Oxide Structures in a Phosphoric Acid Solution according to the Applied Anodization Voltage, Journal of the Microelectronics and Packaging Society, 26, 35 (2019). Doi: https://doi.org/10.6117/kmeps.2019.26.1.0035
  28. Y. J. Park, H. J. Ji, C. Jeong, Development of Superhydrophilic 6061 Aluminum Alloy by Stepwise Anodization According to Pore-Widening Time. Korean Journal of Metals and Materials, 58, 97 (2020). Doi: http://dx.doi.org/10.3365/KJMM.2020.58.2.97
  29. C. Jeong, H. Ji, Systematic Control of Anodic Aluminum Oxide Nanostructures for Enhancing the Superhydrophobicity of 5052 Aluminum Alloy, Materials, 12, 3231 (2019). Doi: https://doi.org/10.3390/ma12193231
  30. C. Jeong, J. Lee, K. Sheppard, C. H. Choi, Air-Impregnated Nanoporous Anodic Aluminum Oxide Layers for Enhancing the Corrosion Resistance of Aluminum, Langmuir, 31, 11040 (2015). Doi: https://doi.org/10.1021/acs.langmuir.5b02392