• Title/Summary/Keyword: Used Insulation Oil

Search Result 95, Processing Time 0.024 seconds

Effects of the Insulation Quality on the Frequency Response of Power Transformers

  • Abeywickrama Nilanga;Ekanayake Chandima;Serdyuk Yuriy V.;Gubanski Stanislaw M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.4
    • /
    • pp.534-542
    • /
    • 2006
  • This paper presents results of frequency domain spectroscopy (FDS) measurements on oil-impregnated pressboard insulation, their analyses and use of the data for modeling high frequency response (FRA) of transformers. The dielectric responses were measured in a broad frequency range, i.e. from 0.1 mHz to 1 MHz, on model samples containing different amount of moisture. The responses were parameterized with terms representing dc conductivity, low frequency dispersion and Cole-Cole polarization mechanisms and they were thereafter used to model the FRA response of a three-phase transformer.

Development of Dielectric Constant Sensor for Measurementof Lubricant Properties (윤활유 물성 측정을 위한 유전상수 센서 개발)

  • Hong, Sung-Ho;Kang, Moon-Sik
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.203-207
    • /
    • 2021
  • This study presents the development of dielectric constant sensors to measure lubricant properties. The lubricant oil sensor is used to measure oil properties and machine conditions. Various condition monitoring methods are applied to diagnose machine conditions. Machine condition monitoring using oil sensors has advantage over other machine condition monitoring methods. The fault conditions can be noticed at the early stages by the detection of wear particles using oil sensors. Therefore, it provides an early warning in the failure procedure. A variety of oil sensors are applied to check the machine condition. Among all oil sensors, only one sensor can measure the tendency of several properties such as acidity and water content. A dielectric constant sensor is also used to measure various oil properties; therefore, it is very useful. The dielectric constant is the ratio of the capacitance of a capacitor using that material as a dielectric to that of a similar capacitor using vacuum as its dielectric. The dielectric constant has an effect on water content, contaminants, base oil, additive, and so forth. In this study, the dielectric constant sensor is fabricated using MEMS process. In the fabrication process, the shape, gap of the electrode array, and thickness of the insulation material are considered to improve the sensitivity of the sensor.

Research of Flow Electrification Phenomena of the used Environment-Friendly Vegetable Insulating Oils (친환경 식물성절연유의 유동대전현상 연구)

  • Choi, Sun-Ho;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.580-584
    • /
    • 2012
  • The insulating oils perform a cooling and insulation action in electric power transformer. The mineral oil has immanent fire dangerousness and environmental contamination problem. Vegetable insulating oil has higher ignition point, flash point and more excellent biodegradability than conventional mineral oil. In a real oil-filled transformers, some of the power is dissipated in the form of heat. And transformer require the heat to be removed from the winding and insulator by forced convection of the insulating oil. The flow electrification occurs when insulating oil was forced to be circulated. In this paper, influence of temperature, velocity of flow, and insulating pipe and diameter on streaming electrification of vegetable insulating oil was investigated using forced circulation apparatus. Temperature effects were most significant, and it showed a peak in the temperature $30^{\circ}C$ to $35^{\circ}C$ at insulating and copper pipe. The change of flow electrification according to area variety could be checked by change of diameter.

A Study on the Electric Field Analysis of Extra-High Voltage Oil-Filled Cable Accessories (초고압 지중 OF 케이블 접속재의 전계해석에 관한 연구)

  • Lee, Jong-Bum;Kang, Dong-Sik;Kang, Do-Hyun;Lee, Soo-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.432-435
    • /
    • 1989
  • This paper presents an algorithm for electric field analysis which is essential to insulation design of extra-high voltage oil-filled cable accessories using finite element method. Governing equation is induced by electromagnetic equation. Variational method is adopted for FEN formulation. Automatic mesh generation which saves time and labor is introduced for the input data. The application results of proposed algorithms were used for insulation design to develop 345kV cable joint.

  • PDF

Physical Properties of Mineral Hydrate Insulation Used Desulfurization Gypsum (탈황석고를 사용한 미네랄 하이드레이트 단열소재의 물리적 특성 연구)

  • Park, Jae-Wan;La, Yun-Ho;Chu, Yong-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.2 no.4
    • /
    • pp.291-296
    • /
    • 2014
  • For the purpose of energy consumption and green-house gas reduction from building, new insulation materials with improved thermal property have been developed and used. Among new insulation materials, mineral hydrate which compensates for the defects of existing materials is using as a prominent insulation material. The fabrication method of mineral hydrate is similar to that of ALC for building structure but mineral hydrate is only used for insulation. The raw materials that make up of mineral hydrate are cement, lime and anhydrite. Especially anhydrite is all dependant on imports. In this study, Desulfurization Gypsum(DG), by-product of oil plant, was used for replacing for imported anhydrite and waste recycling. DG substituted all of anhydrite and a part of lime. Mineral hydrate used DG had analogous thermal and physical properties, compared to existing mineral hydrate.

A study on the Development of Low-loss Type Mold Autotransformers (저손실형 몰드 단권변압기 개발)

  • Lee, Jong-Su;Shin, Myung-Ho;Mun, Byung-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.92-94
    • /
    • 2003
  • The autotransformer currently used on the electric railway system is made of class A insulation material and uses the paper insulation method. As a power converter supplying power to the trolley wire, the autotransformer is one of critical equipment in the railway system. In the autotransformer, load irregularly changes and overload often occurs. These cause overheating of the autotransformer and facilitate deterioration of the autotransformer resulting in burnout accidents due to insulation breakdown. Also, the current autotransformer has poor insolation and short-circuit strength which often badly affect the service life of the transformer, and needs to improve its quality urgently. To overcome one of existing shortcomings of the mold transformer, manufacturers use epoxy resins that have superior flame retardancy to get rid of fro and explosion possibilities during accidents. Currently, new mold transformers are used in indoor distribution facilities with fire-fighting equipments. Coils molded in epoxy resins do not have their insulation performance compromised by humidity, dust, etc enabling easy inspection and maintenance. Comparing to the oil immersed transformer, the mold transformer does not have any concern about environmental pollutions by oil leak or replacement Therefore, to reduce breakdowns and improve reliability of the autotransformer, it is necessary to develop a new mold autotransformer with low loss suitable for our environment to suppress breakdowns of the autotransformer and improve the reliability. This study is about development of a low-loss mold autotransformer necessitated by reasons mentioned earlier.

  • PDF

Insulation Properties and Evaluation of Diglycerol Ester Synthesized by Solid Acid Catalysts (고체산 촉매를 이용해 합성한 diglycerol ester의 전기절연 특성 및 평가)

  • Gwon, Miseong;Baek, Jae Ho;Kim, Myung Hwan;Park, Dae-Won;Lee, Man Sig
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.254-261
    • /
    • 2014
  • The transformer is a static electrical device that transfers energy by inductive coupling. Then, heat is occurred at coils, inner transformer was filled with insulating oils for cooling and insulation. Although mineral oil as insulating oil has been widely used, it does not meet health and current environmental laws because it is not biodegradable. Therefore, in this study, the diglycerol ester was synthesized with diglycerol and fatty acids (oleic acid and caprylic acid) over various catalysts for insulating oil having biodegradability, high flash points and low pour points. The sulfated zirconia ($SO_4{^{2-}}/ZrO_2$) catalyst prepared at different calcination temperature shows the highest conversion of fatty acids at $600^{\circ}C$ due to crystallinity and high density of acid sites per surface area. When the molar ratio of oleic acid and caprylic acid is 1:3, the diglycerol ester shows superior insulation properties that are the flash point of $306^{\circ}C$ and pour point of $-50^{\circ}C$. The insulation properties of synthesized diglycerol ester shows the pour point of $-50^{\circ}C$ and the flash point of over $300^{\circ}C$. Therefore, diglycerol ester is superior to the vegetable oils in insulation properties.

Measurement of moisture contents of oil-paper in transformer with RVM (RVM을 이용한 변압기 절연유와 절연지의 온도에 따른 수분함유량 측정)

  • Han, Hee-Joon;Han, Sang-Ok;Lee, Sei-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07e
    • /
    • pp.79-81
    • /
    • 2005
  • Chemical methods for moisture contents detection of insulation system in transformer must dismount equipment for sampling, and there is shortcoming such as acquiring partial data for measuring. Also the samples can't immediately analyze in field. The Recovery Voltage Method (RVM) will be able to measure a moisture contents at low voltage without dismounting equipment. Therefore, in advanced countries RVM would be used to measure the moisture contents which permeates to the insulation system without weighting additive degradation or mechanical damage. In this paper we have investigated for overcoming these shortcomings using the RVM, and we have measured the moisture contents of transformer insulation with temperature.

  • PDF

Location of Partial Discharge in Oil Transformer by means of Ultrasonic measurement (초음파 측정에 의한 변압기내 부분방전 위치측정)

  • Kwak, H.R.;Jeon, H.J.;Kim, J.C.;Hwang, S.J.;Yoon, Y.H.;Kwon, T.W.;Yoon, Y.B.
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.415-418
    • /
    • 1991
  • This paper described an instrument for the detection and geometric location of partial discharge(PD) sources in oil transformer. This instrument measures electric current pulse and ultrasonic pulse simultaneously in order to determine the geometric location of PD in transformer. Laboratory experiment systems are made for detection and location of PD in oil transformer. It was observed that there are effects of the barrier, such as insulation papers, silicon steel plate and actual transformer with location and detection of PD in model transformer. Through the laboratory actual test, it was clarified that this measurement device could be used satisfactorily for location of pd in oil transformer.

  • PDF

The Aging Diagnosis of OF Cable Insulation Oil by Characteristic Change (OF 케이블 절연유의 특성 변화에 따른 경년열화진단)

  • 윤구섭;정우성;김철운;김태성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.35-40
    • /
    • 1997
  • As demand of electric power are growing and transmission line limited owing to enlargement of the downtown area The eonfidence of underground transmission cable which shows gradual growth are high. It is found whether insulating ability is good or not. In this paper, The exper iment result is shown that the fall of insulating ability and take preventive measure through the analysis of tans, water content, dielectric breakdown voltage, total acid number, volume resistivity , and gas in the oil in an accordance with the characteristic change of oil used very much for insulating oil of cable.

  • PDF