• Title/Summary/Keyword: Urethane-key

Search Result 8, Processing Time 0.02 seconds

Development of Flange Flexible Urethane-key Coupling (플랜지 플렉시블 우레탄카 커플링 개발)

  • Cho, Young-Tae;Lee, Ki-Yong;Lee, Choong-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.667-671
    • /
    • 2010
  • The study was aimed at developing a power transmission coupling that is possible to transfer power without any trouble even if the two rotating shafts are making minute misalignment. The coupling that has been developed is Flange Flexible Urethane-key Coupling that connects two shafts by flanges with Urethane-key. A model coupling for use in transmitting power of 10hp was made and undergone performance evaluation and tests. Property and usefulness was proved through the test. The performance evaluation has demonstrated a property of $11.25Kgf{\cdot}m$ of allowable torque and 28.25hp of power at 1,80Orpm, which was found to be superior compared to the performance of similar couplings. Based on the performance test, study was made also for improving the shape of the Urethane-key and was successful to make the flange in smaller outside diameter. Further application test at site has proved that the product is easy to install and maintain, and has property of absorbing minute misalignment between two shafts and vibration caused there from.

A Study on Urethane Pad Blanking Process of Bellows Diaphragm for Hydrogen Compressor (수소압축기용 벨로우즈 다이아프램의 우레탄 금형 전단공정 연구)

  • Y. G. Kim;H. J. Park;K. E. Kim;M. P. Hong;G. P. Kang;K. Lee
    • Transactions of Materials Processing
    • /
    • v.33 no.1
    • /
    • pp.5-11
    • /
    • 2024
  • The development of a next-generation hydrogen compressor, a key component in the expansion of hydrogen charging infrastructure, is in progress. In order to improve compression efficiency and durability, it is important to optimize the precision forming and shearing processes of the diaphragm, which is the bellows unit cell, as well as the optimization of diaphragm shape itself. In this study, we aim to show that die and process design technology that can synchronize the inner and outer shearing points of the diaphragm for the precision forming of product can be constructed based on a numerical simulation. First, the damage model that can predict the fracture points will be determined using the shear load and shear zone measurements obtained by performing a blanking test of AISI-633 stainless steel. Next, we will explain the overall procedure based on numerical analysis model how to determine the shearing points according to the deformation pattern of urethane die for various shearing die design.

Fabrication and Performance Evaluation of Diaphragm-type Actuators using Biocompatible polymer (생체적합형 고분자를 이용한 박막형 이동기의 제작 및 특성평가)

  • Jung, Young-Dae;Jeong, Hae-Do
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1254-1258
    • /
    • 2007
  • Electro-active polymer (EAP), one of the smart materials, is a new alternative offering ultra-precise movements and bio-compatibility. We present the results of the design, fabrication, and performance evaluation of a fabricated diaphragm-type polymer actuator using segmented polyurethane(SPU). This paper illustrates the relationship between the elastic modulus and maximum deflection as a key property of the Maxwell stress effect and also presents the relationship between the dielectric constant and maximum deflection as a key property of the electrostriction effect, especially in polymer actuators using SPU. A diaphragm-type actuator was used to induce an equation of the vertically distributed load by using a fully clamped circular plate as the boundary condition. To verify the equation, the results were compared to the data measured from load cell. In the near future, a low-cost check valves and bio-robot can be applied by its actuators.

  • PDF

Improved Corrosion and Abrasion Resistance of Organic-Inorganic Composite Coated Electro-galvanized Steels for Digital TV Panels

  • Jo, Du-Hwan;Noh, Sang-Geol;Park, Jong-Tae;Kang, Choon-Ho
    • Corrosion Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.213-217
    • /
    • 2015
  • Recently, household electronic industries require environmentally-friendly and highly functional steels in order to enhance the quality of human life. Customers especially require both excellent corrosion and abrasion resistant anti-fingerprint steels for digital TV panels. Thus POSCO has developed new functional electro-galvanized steels, which have double coated layers with organic-inorganic composites on the zinc surface of the steel for usage as the bottom chassis panel of TVs. The inorganic solution for the bottom layer consists of inorganic phosphate, magnesium, and zirconium compounds with a small amount of epoxy binder, and affords both improved adhesion properties by chemical conversion reactions and corrosion resistance due to a self-healing effect. The composite solution for the top layer was prepared by fine dispersion of organic-inorganic ingredients that consist of a urethane modified polyacrylate polymer, hardener, silica sol and a titanium complex inhibitor in aqueous media. Both composite solutions were coated on the steel surface by using a roll coater and then cured through an induction furnace in the electro-galvanizing line. New anti-fingerprint steel was evaluated for quality performance through such procedures as the salt spray test for corrosion resistance, tribological test for abrasion resistance, and conductivity test for surface electric conductance regarding to both types of polymer resin and coating weight of composite solution. New composite coated anti-fingerprint steels afford both better corrosion resistance and abrasion properties compared to conventional anti-fingerprint steel that mainly consists of acrylate polymers. Detailed discussions of both composite solutions and experimental results suggest that urethane modifications of acrylate polymers of composite solutions play a key role in enhanced quality performances.

Polishing Pad Analysis and Improvement to Control Performance (연마성능 제어를 위한 연마패드표면 해석과 개선)

  • Park, Jae-Hong;Kinoshita, Masaharu;Yoshida, Koichi;Park, Ki-Hyun;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.10
    • /
    • pp.839-845
    • /
    • 2007
  • In this paper, a polishing pad has been analyzed in detail, to understand surface phenomena of polishing process. The polishing pad plays a key role in polishing process and is one of the important layer in polishing process, because it is a reaction layer of polishing[1]. Pad surface physical property is also ruled by pad profile. The profile and roughness of pad is controlled by different types of conditioning tool. Conditioning tool add mechanical force to pad, and make some roughness and profile. Formed pad surface will affect on polishing performance such as RR (Removal Rate) and uniformity in CMP Pad surface condition is changed by conditioning tool and dummy run and is stable at final. And this research, we want to reduce break-in and dummy polishing process by analysis of pad surface and artificial machining to make stable pad surface. The surface treatment or machining enables to control the surface of polishing pad. Therefore, this research intends to verify the effect of the buffing process on pad surface through analysis of the removal rate, friction force and temperature. In this research, urethane polishing pad which is named IC pad(Nitta-Haas Inc.) and has micro pore structure, is studied because, this type of pad is most conventional type.

Stability and Improvement of Polishing Pad in W CMP (W CMP 공정에서의 연마패드표면 안정화 상태와 그 개선)

  • Park, Jae-Hong;Kinoshita, Masaharu;Yoshida, Koichi;Matsumura, Shinichi;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1027-1033
    • /
    • 2007
  • In this research, the polishing pad for W CMP has been analyzed to understand stabilization of polishing performance. For stabilization of process, the polishing pad condition is one of important factors. The polishing pad plays a key role in polishing process, because it contact with reacted surface of wafer[1]. The physical property of pad surface is ruled by conditioning tool which makes roughness and profile of pad surface. Pad surface affects on polishing performance such as RR(Removal Rate) and uniformity in CMP. The stabilized pad surface has stable roughness. And its surface has high level of wettability which can increase the probability of abrasive adhesion on pad. The result of this research is that the reduction of break-in and dummy polishing process were achieved by artificial machining to make stable pad surface. In this research, urethane polishing pad which is named IC pad(Nitta-Haas Inc.) and has micro pore structure, is studied. Because, this type of pad is the most conventional type.

Antimicrobial Characterictics of Antimicrobial Agent (Antibiotics) and Reduction Effect on Mal-ordour. (항균제의 항균특성 및 악취제거 효과)

  • Shin, Choon-Hwan;Kim, Jong-Hyun;Han, Sun-Hong
    • Journal of Environmental Science International
    • /
    • v.3 no.2
    • /
    • pp.157-164
    • /
    • 1994
  • Various antimicrobial agents are widely used for the purpose of antimicrobial process. We investigated antimicrobial activity and reduction efficiency of mal-ordour by the diphenyl ether compound (2,4,4'- trichloro -2'- hydroxy diphenyl ether) against Sraphylocom aureus(S.aureus and Proton vulgaris(p.vulgaris causing the mal-ordour, Especially, the diphenyl ether compound is not restricted to the regulation of water-contamination. In this research, we found that the optimum concentration of diphenyl ether compound was 1.5w% for both strains and antimicrobial expressions were c0.38t= 2.56 for S.aureus, c0.38t=2.67 for P.vulgaris. We found also that -OH group played the role of antimicrobial functional group. Lastly, reduction effect of mal-ordour was more than 90% for both strain at the optimum conditions. Key Words : antimicrobial agents, antimicrobial activity, reduction effect of mal-ordour, antimicrobial expression, antimicrobial functional group.

  • PDF

K-Ras-Activated Cells Can Develop into Lung Tumors When Runx3-Mediated Tumor Suppressor Pathways Are Abrogated

  • Lee, You-Soub;Lee, Ja-Yeol;Song, Soo-Hyun;Kim, Da-Mi;Lee, Jung-Won;Chi, Xin-Zi;Ito, Yoshiaki;Bae, Suk-Chul
    • Molecules and Cells
    • /
    • v.43 no.10
    • /
    • pp.889-897
    • /
    • 2020
  • K-RAS is frequently mutated in human lung adenocarcinomas (ADCs), and the p53 pathway plays a central role in cellular defense against oncogenic K-RAS mutation. However, in mouse lung cancer models, oncogenic K-Ras mutation alone can induce ADCs without p53 mutation, and loss of p53 does not have a significant impact on early K-Ras-induced lung tumorigenesis. These results raise the question of how K-Ras-activated cells evade oncogene surveillance mechanisms and develop into lung ADCs. RUNX3 plays a key role at the restriction (R)-point, which governs multiple tumor suppressor pathways including the p14ARF-p53 pathway. In this study, we found that K-Ras activation in a very limited number of cells, alone or in combination with p53 inactivation, failed to induce any pathologic lesions for up to 1 year. By contrast, when Runx3 was inactivated and K-Ras was activated by the same targeting method, lung ADCs and other tumors were rapidly induced. In a urethane-induced mouse lung tumor model that recapitulates the features of K-RAS-driven human lung tumors, Runx3 was inactivated in both adenomas (ADs) and ADCs, whereas K-Ras was activated only in ADCs. Together, these results demonstrate that the R-point-associated oncogene surveillance mechanism is abrogated by Runx3 inactivation in AD cells and these cells cannot defend against K-Ras activation, resulting in the transition from AD to ADC. Therefore, K-Ras-activated lung epithelial cells do not evade oncogene surveillance mechanisms; instead, they are selected if they occur in AD cells in which Runx3 has been inactivated.