References
- Canon, J., Rex, K., Saiki, A.Y., Mohr, C., Cooke, K., Bagal, D., Gaida, K., Holt, T., Knutson, C.G., Koppada, N., et al. (2019). The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217-223. https://doi.org/10.1038/s41586-019-1694-1
- Chi, X.Z., Lee, J.W., Lee, Y.S., Park, I.Y., Ito, Y., and Bae, S.C. (2017). Runx3 plays a critical role in restriction-point and defense against cellular transformation. Oncogene 36, 6884-6894. https://doi.org/10.1038/onc.2017.290
- Drosten, M., Guerra, C., and Barbacid, M. (2018). Genetically engineered mouse models of K-Ras-driven lung and pancreatic tumors: validation of therapeutic targets. Cold Spring Harb. Perspect. Med. 8, a031542. https://doi.org/10.1101/cshperspect.a031542
- DuPage, M., Dooley, A.L., and Jacks, T. (2009). Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat. Protoc. 4, 1064-1072. https://doi.org/10.1038/nprot.2009.95
- Feldser, D.M., Kostova, K.K., Winslow, M.M., Taylor, S.E., Cashman, C., Whittaker, C.A., Sanchez-Rivera, F.J., Resnick, R., Bronson, R., Hemann, M.T., et al. (2010). Stage-specific sensitivity to p53 restoration during lung cancer progression. Nature 468, 572-575. https://doi.org/10.1038/nature09535
- Guerra, C., Mijimolle, N., Dhawahir, A., Dubus, P., Barradas, M., Serrano, M., Campuzano, V., and Barbacid, M. (2003). Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context. Cancer Cell 4, 111-120. https://doi.org/10.1016/S1535-6108(03)00191-0
- Janne, P.A., Gray, N., and Settleman, J. (2009). Factors underlying sensitivity of cancers to small-molecule kinase inhibitors. Nat. Rev. Drug Discov. 8, 709-723. https://doi.org/10.1038/nrd2871
- Junttila, M.R., Karnezis, A.N., Garcia, D., Madriles, F., Kortlever, R.M., Rostker, F., Brown Swigart, L., Pham, D.M., Seo, Y., Evan, G.I., et al. (2010). Selective activation of p53-mediated tumour suppression in high-grade tumours. Nature 468, 567-571. https://doi.org/10.1038/nature09526
- Kemp, R., Ireland, H., Clayton, E., Houghton, C., Howard, L., and Winton, D.J. (2004). Elimination of background recombination: somatic induction of Cre by combined transcriptional regulation and hormone binding affinity. Nucleic Acids Res. 32, e92. https://doi.org/10.1093/nar/gnh090
- Lee, J.W. and Bae, S.C. (2020). Role of RUNX family members in G1 restriction point regulation. Mol. Cells 43, 182-187. https://doi.org/10.14348/molcells.2019.0319
- Lee, J.W., Kim, D.M., Jang, J.W., Park, T.G., Song, S.H., Lee, Y.S., Chi, X.Z., Park, I.Y., Hyun, J.W., Ito, Y., et al. (2019a). RUNX3 regulates cell cycle-dependent chromatin dynamics by functioning as a pioneer factor of the restrictionpoint. Nat. Commun. 10, 1897. https://doi.org/10.1038/s41467-019-09810-w
- Lee, J.W., Park, T.G., and Bae, S.C. (2019b). Involvement of RUNX and BRD family members in restriction point. Mol. Cells 42, 836-839. https://doi.org/10.14348/molcells.2019.0256
- Lee, K.S., Lee, Y.S., Lee, J.M., Ito, K., Cinghu, S., Kim, J.H., Jang, J.W., Li, Y.H., Goh, Y.M., Chi, X.Z., et al. (2010). Runx3 is required for the differentiation of lung epithelial cells and suppression of lung cancer. Oncogene 29, 3349-3361. https://doi.org/10.1038/onc.2010.79
- Lee, Y.S., Lee, J.W., Jang, J.W., Chi, X.Z., Kim, J.H., Li, Y.H., Kim, M.K., Kim, D.M., Choi, B.S., Kim, E.G., et al. (2013). Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma. Cancer Cell 24, 603-616. https://doi.org/10.1016/j.ccr.2013.10.003
- Muzumdar, M.D., Dorans, K.J., Chung, K.M., Robbins, R., Tammela, T., Gocheva, V., Li, C.M., and Jacks, T. (2016). Clonal dynamics following p53 loss of heterozygosity in Kras-driven cancers. Nat. Commun. 7, 12685. https://doi.org/10.1038/ncomms12685
- Podsypanina, K., Politi, K., Beverly, L.J., and Varmus, H.E. (2008). Oncogene cooperation in tumor maintenance and tumor recurrence in mouse mammary tumors induced by Myc and mutant Kras. Proc. Natl. Acad. Sci. U. S. A. 105, 5242-5247. https://doi.org/10.1073/pnas.0801197105
- Samarakkody, A.S., Shin, N.Y., and Cantor, A.B. (2020). Role of RUNX family transcription factors in DNA damage response. Mol. Cells 43, 99-106. https://doi.org/10.14348/molcells.2019.0304
- Seo, W. and Taniuchi, I. (2020). The roles of RUNX family proteins in development of immune cells. Mol. Cells 43, 107-113. https://doi.org/10.14348/molcells.2019.0291
- Serrano, M., Lin, A.W., McCurrach, M.E., Beach, D., and Lowe, S.W. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593-602. https://doi.org/10.1016/S0092-8674(00)81902-9
- Shao, D.D., Xue, W., Krall, E.B., Bhutkar, A., Piccioni, F., Wang, X., Schinzel, A.C., Sood, S., Rosenbluh, J., Kim, J.W., et al. (2014). KRAS and YAP1 converge to regulate EMT and tumor survival. Cell 158, 171-184. https://doi.org/10.1016/j.cell.2014.06.004
- Subramanian, J. and Govindan, R. (2008). Molecular genetics of lung cancer in people who have never smoked. Lancet Oncol. 9, 676-682. https://doi.org/10.1016/S1470-2045(08)70174-8
- Tuveson, D.A., Shaw, A.T., Willis, N.A., Silver, D.P., Jackson, E.L., Chang, S., Mercer, K.L., Grochow, R., Hock, H., Crowley, D., et al. (2004). Endogenous oncogenic K-ras(G12D) stimulates proliferation and widespread neoplastic and developmental defects. Cancer Cell 5, 375-387. https://doi.org/10.1016/S1535-6108(04)00085-6
- Weinberg, R.A. (2014). pRb and control of the cell cycle clock. In The Biology of Cancer, R.A. Weinberg, eds. (New York: Garland Science), pp. 275-329.
- Westcott, P.M., Halliwill, K.D., To, M.D., Rashid, M., Rust, A.G., Keane, T.M., Delrosario, R., Jen, K.Y., Gurley, K.E., Kemp, C.J., et al. (2015). The mutational landscapes of genetic and chemical models of Kras-driven lung cancer. Nature 517, 489-492. https://doi.org/10.1038/nature13898
- Wistuba, I.I. and Gazdar, A.F. (2006). Lung cancer preneoplasia. Annu. Rev. Pathol. 1, 331-348. https://doi.org/10.1146/annurev.pathol.1.110304.100103
- Xue, J.Y., Zhao, Y., Aronowitz, J., Mai, T.T., Vides, A., Qeriqi, B., Kim, D., Li, C., de Stanchina, E., Mazutis, L., et al. (2020). Rapid non-uniform adaptation to conformation-specific KRAS(G12C) inhibition. Nature 577, 421-425. https://doi.org/10.1038/s41586-019-1884-x