• Title/Summary/Keyword: Urea solution

Search Result 300, Processing Time 0.037 seconds

Study on Characteristics of Change of Urea and Biuret Content by Temperature Variation in Urea Solution (요소수(Urea solution)의 온도변화에 따른 요소 및 뷰렛함량 변화 특성 연구)

  • Doe, Jin-woo;Park, Tae-sung;Lee, Yu-rim;Yim, Eui-soon;Lee, Joung-min;Kang, Hyung-kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.1307-1319
    • /
    • 2018
  • As interests in the air pollution increases, many kinds of researches are underway on the reduction of air pollutants. The removal of nitrogen oxides from the emission gas of diesel vehicles using urea solution has shown a great effect. The quality of urea solution is strictly defined by domestic law, but the increase of impurities in urea solution reduces the effect of reducing nitrogen oxides. Therefore, in this study, the change of physical properties of urea solution was analyzed after heating the urea solution for a certain temperature and time. Also, the changes of physical properties of urea solution were analyzed according to kinds of storage container and temperature for storing the urea solution. After heating the urea solution for a certain period of time, the biuret content in urea solution increased and the content of urea decreased. As the urea content decreased, both density and refractive index decreased. In the storage stability test carried out at a constant temperature with iron and PET containers, no change in physical properties was observed.

Freezing and Melting Phenomena of Urea-water Solution for Diesel Vehicle SCR System (디젤차량 SCR 시스템용 요소수용액의 동결과 해동 현상)

  • Choi, B.C.;Seo, C.K.;Myong, K.J.
    • Journal of Power System Engineering
    • /
    • v.13 no.4
    • /
    • pp.5-10
    • /
    • 2009
  • Urea-SCR system, the selective catalytic reduction using urea as reducing agent, is a powerful technique to reduce nitrogen oxides(NOx) emitted from diesel engines. However, a tank of urea(32.5 wt%)-water solution can be frozen in low ambient temperature levels of below $-11^{\circ}C$. The purpose of this study is to understand freezing and melting phenomena of the urea-water solution, and its can be applied to get the urea-water solution from frozen it within 5 minutes after cold start. Factors considered were the type of heater and the urea tank shape. From the results, it was found that melting volume of cartridge heater B during 5 minutes of heating period was 83ml when supplying electric power of 150W. Horizontal heater B, which was put in the narrow bottom space of the tank T1, had fast melting characteristics.

  • PDF

Development of an Urea Sensor using Electric Conductivity Method (전기전도도법을 이용한 우레아 농도 센서 개발)

  • Choi, B.C.;Kim, K.Y.;Yang, J.Y.;Kim, H.N.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.55-60
    • /
    • 2011
  • The popularity of diesel engines is derived primarily from their higher thermal efficiency resulting from higher compression ratio. NOx removal from the diesel emissions is very important to meet stringent emission regulations. NOx emission from diesel engines is removed by an urea-SCR or an LNT system. The urea-SCR system needs the urea-solution supply system with concentration and level sensor. This study was carried out to develop a sensor for the measurement of urea-solution concentration by an electric conductivity method. Considering experimental parameters were the material of electrode, two kinds of electric power(AC or DC), the distance between two electrodes, and the length of electrode. It was found that the AC electric power was more useful to measure the urea-solution concentration compared to DC, because it prevented an ionization of the urea-solution. The silver rod coated with Pt is the most useful electrode, tendency of which is similar to Pt rod, and the cost is more economic. We could also find out the optimum distance between two electrodes and the length of electrode was 10mm and 3mm, respectively.

Effect of Atomization Characteristics of Twin Fluid Nozzle on Urea Pyrolysis (이유체 노즐 미립화 특성이 요소 열분해에 미치는 영향)

  • Ku, Kun Woo;Chung, Kyung Yul;Yoon, Hyun Jin;Seok, Ji Kwon;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.20 no.3
    • /
    • pp.162-167
    • /
    • 2015
  • Recently, there has been rising interest in applying urea-SCR systems to large marine diesel engines because the International Maritime Organization (IMO) has decided to enforce NOx reduction regulations. Generally, in the case of urea-SCR of the marine diesel engine, a type of twin fluid atomizer has been using for injection of the urea solution. This study conducted to investigate an effect of the atomization of external-mixing twin fluid nozzle on the conversion efficiency of reductant. The lab-scaled experiment device was installed to mimic the urea-SCR system of the marine diesel engine for this study. In a low temperature inflow gas condition which is similar with the exhaust temperature of large marine diesel engine, this study found that the conversion efficiency of reductant of when relative big size urea solution droplets are injected into exhaust gas stream can be larger than that of when small size urea solution droplets are injected. According to results of this study, the reason was associated with decrease of reaction rate constant caused from temperature drop of inflow gas by assist air of twin fluid atomizer.

Preparation of Sodiumisocyanate and its Analyzing Method in the Presence of Impurities $Na_2CO_3$, Urea, and Biuret (Sodium Isocyanate의 제법 및 $Na_2CO_3$, Urea, Biuret 혼재시 그의 정량분석법에 관한 연구)

  • 국채호
    • YAKHAK HOEJI
    • /
    • v.7 no.2_3
    • /
    • pp.67-71
    • /
    • 1963
  • Studies the reaction mechanism and optimal reaction condition of the process of preparing sodium isocyanate, by means of heating of sodium carbonate and urea. Proposing, at the sametime, the quantitative analyzing method of sodium isocyanate in the presence of impurities of $Na_{2}CO_{3}$, urea and biuret. 1. Sodium isocyanate could be prepared by means of heating reaction of sodium carbonate and urea. 2. Adding urea into the heated sodium carbonate is reasonable. 3. Quantitative analysis of sodium isocyanate in the presence of impurities, $Na_{2}CO_{3}$, urea and biuret could be done by the following method:-adding nitrobarite solution into sample solution in order to remove $CO_{3}"$ and neutralize the solution, filtering off $BaCO_{3}$, and then precipitating isocyanate as a silver salt, filtering off AgNCO, and then, titrating remaining $AgNO_{3}$ with $NH_{4}SCN$, (indicator $FeNH_{4}(SO_{4})_{2})$/TEX>

  • PDF

An Experimental Study on Conversion of Reducing Agent from Aqueous Urea Solutions under Low Reaction Temperature (저온 반응장에서 요소 수용액의 환원제 전환에 관한 실험적 연구)

  • Ku, Kun Woo;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.20-27
    • /
    • 2015
  • Urea-SCR which is one of the aftertreatment technologies for reducing the NOx emission is widely used. An experimental study was performed to investigate urea decomposition under various thermo-fluid conditions, with different temperatures and velocities of inflow gas, and urea solution quantities. 40 wt. % aqueous urea solutions were used in this study. The inflow gas conditions were similar to the exhaust conditions of a large marine engine. The spray performance of urea solution injector was identical under all experimental conditions. The conversion efficiency of $NH_3$ was larger than that of HNCO under all experimental conditions, unlike for the theoretical thermolysis reaction.

A Study on the Distribution of Injected Urea into the Exhaust Pipe in a SCR System (선택적 환원촉매(SCR)장치에서 배기관내에 분사된 환원제 분포에 관한 연구)

  • Choi, J.H.;Lee, Y.C.;LEE, S.W.;Cho, Y.S.;LEE, S.H.;Oh, S.K.;Dong, Y.H.
    • Journal of Power System Engineering
    • /
    • v.14 no.1
    • /
    • pp.16-21
    • /
    • 2010
  • This research focused on the spray and distribution characteristics of urea solution by applying flow visualization techniques and did durability and driver test on injectors as well. The spray characteristics of urea solution was observed by CCD camera. Also, the distribution characteristics of urea solution was evaluated quantitatively as well by using 3D laser scanner equipment. It was considered that it was reasonable to use the injector for gasoline engine in order to inject the urea. The best distribution chart result was observed near 45cm distance difference between catalyst and urea spray injector. As a result of trapped urea distribution chart analysis, optimal pressure and volumetric flow rates of air and urea were derived in order to improve the distribution of Urea. This information may contribute to provide fundamental data in the future.

A Study on the Characteristic and Droplet Uniformity of Spray Injection to Exhaust Gas Flow from Urea Solution Injector (Urea 수용액의 배기가스 유동장내 분무 특성과 분무 균일도에 관한 연구)

  • Oh, Jung-Mo;Cha, Won-Sim;Kim, Ki-Bum;Lee, Jin-Ha;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.83-89
    • /
    • 2011
  • Diesel engines can produce higher fuel efficiency and lower $CO_2$ emission, they are subject to ever more stringent emission regulation. However, there are two major emission concerns fo diesel engines like such as particulate matter (PM) and nitrogen oxides (NOx). Moreover, it is not easy to satisfy the regulations on the emission of NOx and PM, which are getting more strengthened. One of the solutions is to apply the new combustion concept using multistage injection such as HCCI and PCCI. The other solution is to apply after-treatment systems. For example, lean NOx trap catalyst, Urea-SCR and others have various advantages and disadvantages Especially, Urea-SCR system have advantages such as a high conversion efficiency and a wide operation conditions. Hence the key factor to implementation of Urea-SCR technology, good mixing of urea(Ammonia) and gas, reducing Ammonia slip. Urea mixer components are required to facilitate evaporation and mixing because the liquid state of urea poses significant barriers for evaporation, and the distance to mixer is the most critical that affect mixer performance. In this study, to find out the distance from injector to mixer and simulation factor, a laser diagnostics and high speed camera are used to analyze urea injector spray characteristics and to present a distribution of urea solution in transparent manifold In addition, Droplet Uniformity Index is calculated from the acquired images by using image processing method to clarify the distribution of spray.

Frozen and Melting Characteristics of Urea-aqueous Solution for Urea-SCR System by Circulation of Engine Coolant (엔진 냉각수 순환에 의한 urea-SCR 시스템용 요소수의 동결 및 해동 특성)

  • Choi, B.C.;Kim, Y.K.;Kim, H.N.
    • Journal of Power System Engineering
    • /
    • v.15 no.4
    • /
    • pp.42-47
    • /
    • 2011
  • The purpose of this study is to investigate the best melting condition with various winding number of a heating pipe, supplying quantity of engine coolant and coolant temperature at the inlet of the heating pipe. Also, it is to suggest getting method of an appropriate quantity of the agent for the urea-SCR system within 10 minutes. For this matter, this study identifies the temperature distribution of inside of urea-tank while it is frozen at the low temperature condition, and suggests the best melting condition of the frozen urea within 10 minutes. From the results, it was found that 2L of melted urea was obtained by the coolant flow rate of 200L/hr at $70^{\circ}C$ for 10 minutes from the start of engine operating.

Numerical Investigation of the Spray Behavior and Flow Characteristics of Urea-Water Solution Injected into Diesel Exhaust Pipe (디젤 배기관에 분사된 우레아 수용액의 분무 거동 및 유동 특성에 관한 연구)

  • An, Tae Hyun;Kim, Man Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.41-48
    • /
    • 2014
  • A urea-SCR system suffers from some issues associated with the ammonia slip phenomenon, which mainly occurs because of the shortage of evaporation and thermolysis time, and this makes it difficult to achieve an uniform distribution of injected urea. A numerical study was therefore performed by changing such various parameters as installed injector angle and application and angle of mixer to enhance evaporation and the mixing of urea water solution with exhaust gases. As a result, various parameters were found to affect the evaporation and mixing characteristics between exhaust gas and urea water solution, and their optimization is required. Finally, useful guidelines were suggested to achieve the optimum design of a urea-SCR injection system for improving the DeNOx performance and reducing ammonia slip.