• Title/Summary/Keyword: Urea cycle

Search Result 94, Processing Time 0.029 seconds

Clinical Manifestations of Inborn Errors of the Urea Cycle and Related Metabolic Disorders during Childhood

  • Endo, Fumio;Matsuura, Toshinobu;Yanagita, Kaede;Matsuda, Ichiro
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.5 no.1
    • /
    • pp.76-87
    • /
    • 2005
  • Various disorders cause hyperammonemia during childhood. Amongthem are those caused by inherited defects in urea synthesis and related metabolic pathways. These disorders can be grouped into two types: disorders of the enzymes that comprise the urea cycle, and disorders of the transporters or metabolites of theamino acids related to the urea cycle. Principal clinical features of these disorders are caused by elevated levels of blood ammonium. Additional disease-specific symptoms are related to the particular metabolic defect. These specific clinical manifestations are often due to an excess or lack of specific amino acids. Treatment of urea cycle disorders and related metabolic diseases consists of nutritional restriction of proteins, administration of specific amino acids, and use of alternative pathways for discarding excess nitrogen. Although combinations of these treatments are extensively employed, the prognosis of severe cases remains unsatisfactory. Liver transplantation is one alternative for which a better prognosis is reported.

  • PDF

Successful treatment of a child with citrullinemia

  • Lee, Key-Hyoung;Park, Moon-Sung;Hahn, Si-Hoon
    • Journal of Genetic Medicine
    • /
    • v.1 no.1
    • /
    • pp.5-10
    • /
    • 1997
  • The amino acids formed by degradation of proteins ingested produce ammonia. The ammonia which is broken down and excreted as urea through a process known as the Klebs-Hensleit cycle or the urea cycle (Rezvani, 1995). The urea cycle consists of five enzymes necessary for the synthesis of carbamyl phosphate, citrulline, argininosuccinate, arginine, and urea: carbamyl phosphate synthetase (CPS), ornithine transcarbamylase (OTC), argininosuccinate synthetase (AS), argininosuccinate lyase (AL), and arginase (ARG) (Lloyd, 1992). Congenital deficiencies of the enzymes involved in the urea cycle are diseases that are almost fatal without treatment, showing symptoms like vomiting, lethargy, dyspnea, and coma due to hyperammonemia coming from the accumulation of ammonia and metabolic precursors resulting from the deficiency of one of these enzymes (Batshaw and Brusilow, 1983). Among these, the disease manifested by the congenital deficiency of argininosuccinate synthetase (AS) which is associated with the formation of argininosuccinate in citrulline is called argininosuccinate synthetase deficiency or citrullinemia. There have been two reports on this so far in Korea; one in July 1987 by Kim et al. and the other by Park et al. in 1995. We are to report a case of successful treatment of a child with citrullinemia who was transferred to our hospital due to dyspnea, lethargy, feeding difficulties, convulsions and cyanosis together with some document studies related to this case.

  • PDF

Effects of Alanine and Glutamine on Alcohol Oxidation and Urea Nitrogen Production in Perfused Rat Liver

  • Yim, Jungeun;Chyun, Jonghee;Cha, Youngnam
    • Nutritional Sciences
    • /
    • v.6 no.4
    • /
    • pp.189-194
    • /
    • 2003
  • Most of the ethyl alcohol consumed by humans is oxidized to acetaldehyde in the liver by the cytoplasmic alcohol dehydrogenase (ADH) system. For this ADH-catalyzed oxidation of alcohol, $NAD^+$ is required as the coenzyme and $NAD^+$becomes reduced to NADH. As the $NAD^+$becomes depleted and NADH accumulates, alcohol oxidation is reduced. For continued alcohol oxidation, the accumulated NADH must be quickly reoxidized to $NAD^+$, and it is this reoxidation of NADH to $NAD^+$that is known to be the rate-limiting step in the overall oxidation rate of alcohol The reoxidation of NADH to $NAD^+$is catalyzed by lactate dehydrogenase in the cytoplasm of hepatocytes, with pyruvate being utilized as the substrate. The pyruvate may be supplied from alanine as a result of amino acid metabolism via the urea cycle. Also, glutamine is thought to help with the supply of pyruvate indirectly, and to activate the urea cycle by producing $NH_3$. Thus, in the present study, we have examined the effects of alanine and glutamine on the alcohol oxidation rate. We utilized isolated perfused liver tissue in a system where media containing alanine and glutamine was circulated. Our results showed that when alanine (5.0mM) was added to the glucose-free infusion media, the alcohol oxidation rate was increased by 130%. Furthermore, when both glutamine and alanine were added together to the infusion media, the alcohol oxidation rate increased by as much as 190%, and the rate of urea nitrogen production increased by up to 200%. The addition of glutamine (5.0mM) alone to the infusion media did not accelerate the alcohol oxidation rate. The increases in the rates of alcohol oxidation and urea nitrogen production through the addition of alanine and glutamine indicate that these amino acids have contributed to the enhanced supply of pyruvate through the urea cycle. Based on these results, it is concluded that the dietary supplementation of alanine and glutamine could contribute to increased alcohol detoxification through the urea cycle, by enhancing the supply of pyruvate and $NAD^+$to ensure accelerated rates of alcohol oxidation.

A Study of NH3 Adsorption/Desorption Characteristics and Model Based Control in the Urea-SCR System (Urea-SCR 시스템의 NH3 흡·탈착 특성 및 모델기반 제어 연구)

  • Ham, Yunyoung;Park, Suyeol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.302-309
    • /
    • 2016
  • Urea-SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, model based open loop control for urea injection was developed and assessed in the European Transient Cycle (ETC) for heavy duty diesel engine. On the basis of the transient modeling, the kinetic parameters of the $NH_3$ adsorption and desorption are calibrated with the experimental results performed over the zeolite based catalyst. $NH_3$ storage or surface coverage of SCR catalyst can not be measured directly and has to be calculated, which is taken into account as a control parameter in this model. In order to reduce $NH_3$ slip while maintaining NOx reduction, $NH_3$ storage control algorithm was applied to correct the basic urea quantity. If the actual $NH_3$ surface coverage is higher than the maximal $NH_3$ surface coverage, the urea injection quantity is significantly reduced in the ETC cycle. By applying this logic, the resulting $NH_3$ slip peak can be avoided effectively. With optimizing the kinetic parameters based on standard SCR reaction, it suggests that a simplified, less accurate model can be effective to evaluate the capability of model based control in the ETC cycle.

Study on the Performance Characteristics of Urea-SCR System in the ETC Test (ETC 모드에서 Urea-SCR 시스템의 성능 특성 연구)

  • Ham, Yun-Young;Choi, Dong-Seok;Park, Yong-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.122-128
    • /
    • 2010
  • To meet the NOx limit without a penalty of fuel consumption, urea-SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, the performance characteristics of urea-SCR system with open loop control were assessed in the European Transient Cycle(ETC) for heavy duty diesel engine. The SCR inlet temperaure varied in the range of 200 to $340^{\circ}C$ in the ETC cycle. Open loop control calculated the urea flow rate based on the NOx and NSR map which gave for each combination of SCR inlet temperature and space velocity the normalized $NH_3$ to NOx stoichiometric ratio which resulted in a steady-state $NH_3$ slip of 20ppm. During the ETC cycle, the open loop control with the optimized NSR offset achieved NOx reduction of 80% while keeping the average $NH_3$ slip below 10ppm and maximum 20ppm. It was also found that NOx sensor was cross-sensitive to $NH_3$ and a control strategy for cross-sensitivity compensation was required in order to use a NOx sensor as feedback device.

Characterization of SCR System for NOx Reduction of Diesel Engine (II) (디젤엔진의 질소산화물 저감을 위한 Urea SCR 시스템 특성 분석 (II))

  • Lee, Joon-Seong;Kim, Nam-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.83-89
    • /
    • 2008
  • The Effect of Space Velocity(SV) on NOx conversion rate was performed to develop NOx reduction after-treatment system. SV is calculated from engine exhaust gas volume and SCR catalyst volume. Found the Urea injection duty of maximum efficiency for NOx conversion if increase SV, NOx Conversion rate is down. Especially, when SV is more than $110,000h^{-1}$, NOx conversion rate decrease suddenly. Same case, if SV is lower than $40,000h^{-1}$, NOx conversion rate is down. Also, the characterization of Urea-SCR system was performed. Three candidate injectors for injecting Urea were tested in terms of 속 injection rate and NOx reduction rate. The performances of SCR catalytic converter on temperature were investigated. The performance of Urea-SCR system was estimated in the NEDC test cycle with and without EGR. It was found that nozzle type injector had high NOx conversion rate. SCR catalytic converter had the highest efficiency at the temperature of $350^{\circ}C$. EGR+Urea-SCR system achieved NOx reduction efficiency of 73% through the NEDC test cycle.

Aspartate-glutamate carrier 2 (citrin): a role in glucose and amino acid metabolism in the liver

  • Milan Holecek
    • BMB Reports
    • /
    • v.56 no.7
    • /
    • pp.385-391
    • /
    • 2023
  • Aspartate-glutamate carrier 2 (AGC2, citrin) is a mitochondrial carrier expressed in the liver that transports aspartate from mitochondria into the cytosol in exchange for glutamate. The AGC2 is the main component of the malate-aspartate shuttle (MAS) that ensures indirect transport of NADH produced in the cytosol during glycolysis, lactate oxidation to pyruvate, and ethanol oxidation to acetaldehyde into mitochondria. Through MAS, AGC2 is necessary to maintain intracellular redox balance, mitochondrial respiration, and ATP synthesis. Through elevated cytosolic Ca2+ level, the AGC2 is stimulated by catecholamines and glucagon during starvation, exercise, and muscle wasting disorders. In these conditions, AGC2 increases aspartate input to the urea cycle, where aspartate is a source of one of two nitrogen atoms in the urea molecule (the other is ammonia), and a substrate for the synthesis of fumarate that is gradually converted to oxaloacetate, the starting substrate for gluconeogenesis. Furthermore, aspartate is a substrate for the synthesis of asparagine, nucleotides, and proteins. It is concluded that AGC2 plays a fundamental role in the compartmentalization of aspartate and glutamate metabolism and linkage of the reactions of MAS, glycolysis, gluconeogenesis, amino acid catabolism, urea cycle, protein synthesis, and cell proliferation. Targeting of AGC genes may represent a new therapeutic strategy to fight cancer.

The efficient Erythropoietin expression system in Chinese Hamster Ovary cells by introduction of urea cycle enzymes

  • Lee, Yun-Jeong;Kim, Jung-Kwon;Kim, Hyung-Jin;Kim, Na-Young;Kim, Jung-Hoe;Kim, Hong-Jin
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.231.2-231.2
    • /
    • 2003
  • The efficient EPO (Erythropoietin) expression system in Chinese Hamster Ovary (CHO) cells was devised through the removal of ammonium ion accumulated in the media by introducing urea cycle enzymes. Previously, we developed C05 cell by transfecting the carbamoly phosphate synthase (CPS) and ornithine transcarbamoylase (OTC) into the EPO expressing CHO cell, IBE. (omitted)

  • PDF

Development of Map based Open Loop Control Algorithm for Urea - SCR System (Urea-SCR 시스템의 Map 기반 Open Loop 제어알고리즘 개발)

  • Ham, Yun-Young;Park, Yong-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.50-56
    • /
    • 2011
  • To meet the NOx limit without a penalty of fuel consumption, Urea-SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, map based open loop control for urea injection was developed and assessed in the European Transient Cycle (ETC) for heavy duty diesel engine. The basic urea quantity set-value which was calculated using the look up tables of engine out NOx, exhaust flow rate and optimum NSR resulted in NOx reduction of 80% and the average $NH_3$ slip of 24 ppm and maximum of 79 ppm. In order to reduce $NH_3$ slip, $NH_3$ storage control algorithm was applied to correct the basic urea quantity and reduced $NH_3$ slip levels to the average 15 ppm and maximum 49 ppm while keeping NOx reduction of 76%. With high and increasing SCR temperature, the $NH_3$ storage capacity decreases, which leads to $NH_3$ slip. The resulting $NH_3$ slip peak can be avoided by stopping or significantly reducing the urea injection during the SCR temperature gradient is over $30^{\circ}C/min$.

Quantitative Comparison of Diversity and Conformity in Nitrogen Recycling of Ruminants

  • Obitsu, T.;Taniguchi, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.440-447
    • /
    • 2009
  • Domestic ruminant animals are reared in diverse production systems, ranging from extensive systems under semi-arid and tropical conditions with poor feed resources to intensive systems in temperate and cold areas with high quality feed. Nitrogen (N) recycling between the body and gut of ruminants plays a key role in the adaptation to such diverse nutritional conditions. Ammonia and microbial protein produced in the gut and urea synthesized in the liver are major players in N-recycling transactions. In this review, we focus on the physiological factors affecting urea production and recycling. Sheep and buffalo probably have higher abilities to reabsorb urea from the kidney compared with cattle. This affects the degree of urea-N recycling between the body and gut at both low and high N intakes. The synthesis and gut entry of urea also differs between cattle bred for either dairy or beef production. Lactating dairy cows show a higher gut entry of urea compared with growing cattle. The synthesis and recycling of urea dramatically increases after weaning, so that the functional development of the rumen exerts an essential role in N transactions. Furthermore, high ambient temperature increases urea production but reduces urea gut entry. An increase in total urea flux, caused by the return to the ornithine cycle from the gut entry, is considered to serve as a labile N pool in the whole body to permit metabolic plasticity under a variety of physiological, environmental and nutritional conditions.