• Title/Summary/Keyword: Urban-Transit

Search Result 638, Processing Time 0.026 seconds

Study on Impact Properties of Polyamide 12 depending on Temperature by Selective Laser Sintering Process (선택적 레이저 소결 공정 적용 폴리아미드 12의 온도별 충격 특성에 관한 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.136-142
    • /
    • 2018
  • Additive manufacturing process technology, known as the 3D printing process, is expanding its utilization from simple model realization to commercialized part production based on continuous material development. Recently, research and development have been actively carried out to fabricate lightweight and high-strength parts using polymers, such as polyamide (polyamide), which is a high-strength engineering plastic material. In this study, the Izod impact characteristics were analyzed for polyamide 12 (PA12) materials. For the specimen production, selective laser sintering process technology, which has excellent mechanical properties of finished products, was applied. In addition, PA12 and glass bead reinforced PA12 materials were produced. The specimens were classified according to the production direction on the production platform, and each specimen was subjected to an Izod test at test temperatures of $-25^{\circ}C$, $25^{\circ}C$, and $60^{\circ}C$. As a result, the impact strength of PA12 and glass bead-reinforced PA12 of vertical direction specimens were 48.8% and 16.3% lower than those of the parallel specimens at a $25^{\circ}C$ test temperature and the impact strength of parallel specimens was improved by 46.5% and 20.4% at a test temperature of $60^{\circ}C$ compared to that at $-25^{\circ}C$.

Experimental analysis of heat exchanger performance produced by laser 3D printing technique (레이저 3D 프린팅 기법으로 제작한 열교환기 성능시험 분석 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.270-276
    • /
    • 2020
  • 3D printing is an additive manufacturing technology that can produce complex shapes in a single process for a range of materials, such as polymers, ceramics, and metals. Recent 3D printing technology has developed to a level that enables the mass-production through an improvement of the printing speed and the continuous development of applicable materials. In this study, 3D printing technology using a laser was applied to manufacture a heat exchanger for an air compressor in a railway vehicle. First, the optimal design of the heat exchanger was carried out by focusing on weight reduction and compactness as a shape suitable for 3D printing. Based on the design derived, heat exchanger prototypes were made of AlSi10Mg alloy material by applying the SLM technique. Moreover, the manufactured prototypes were attached to an existing air compressor, and the heat exchange performance of the compressed air was tested. The test results of the 3D printed prototypes showed a heat exchange performance of approximately 80% and 85% at low and high-pressure, respectively, compared to the existing heat exchanger. From the 𝓔-NTU method results with an external cooling air condition similar to that of the existing heat exchanger, the calculated heat transfer amount of 3D printed parts showed similar performance compared to the existing heat exchanger. As a result, the 3D printed heat exchanger is lightweight with good performance.

A Study on the Interference of Harmonic Frequency during the Change of Urban Transit's Signalling Systems (도시철도 신호시스템의 절체에 따른 주파수 간섭 연구)

  • Jeong, Rag-Gyo;Kim, Beak-Hyun;Joung, Eui-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.2
    • /
    • pp.469-475
    • /
    • 2010
  • The railway signalling system plays an essential role in the safe and efficient train operation as serving control functions of train operation intervals and train routes. The reliability and safety of the system are very important because the failure of the railway signalling system can lead to train collision or derailment as well as train operation stop. Until now, in railway signalling system the conventional wayside signal mode has been used generally. There are, however, the risk of accidents such as human mistakes caused by that the driver identifies the signal lamp status and controls train speed with the naked eye. It is also necessary to refurbish the obsolete system. Thereby, It is being effective that the onboard signal mode has been recently introduced and applied in order to transmit the speed control information to train by using the computer and communication equipment. It is necessary to switch over the system in a way while providing passengers with an operation service to replace the obsolete signal system. In this paper, we verify the cases through trial assessment which are solved by the way of adding specific functionalities in the problems of interference among the procedure of switch-over processes and a serial of processes for system verification while a train is operated in the new system in parallel to the existing system.

Integration of Space Syntax Theory and Logit Model for Walkability Evaluation in Urban Pedestrian Networks (도시 보행네트워크의 보행성 평가를 위한 공간구문론과 Logit 모형의 통합방안)

  • Kim, Jong Hyung;Lee, Mee Young
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.5
    • /
    • pp.62-70
    • /
    • 2016
  • Ensuring walkability in a city where pedestrians and vehicles coexist is an issue of critical importance. The relative relationship between vehicle transit and walkability improvements complicates the evaluation of walkability, which thus necessitates the formation of a quantitative standard by which a methodological measurement of walkability can be achieved inside the pedestrian network. Therefore, a model is determined whereby quantitative indices such as, but not limited to, experiences of accessibility, mobility, and convenience within the network are estimated. This research proposes the integration of space syntax theory and the logit path choice model in the evaluation of walkability. Space syntax theory assesses adequacy of the constructed pedestrian network through calculation of the link integration value, while the logit model estimates its safety, mobility, and accessibility using probability. The advantage of the integrated model hence lies in its ability to sufficiently reflect such evaluation measures as the integration value, mobility convenience, accessibility potential, and safety experienced by the demand in a quantitative manner through probability computation. In this research, the Dial Algorithm is used to arrive at a solution to the logit model. This process requires that the physical distance of the pedestrian network and the perceptive distance of space syntax theory be made equivalent. In this, the research makes use of network expansion to reflect wait times. The evaluation index calculated through the integrated model is reviewed and using the results of this sample network, the applicability of the model is assessed.

A Study on the Evaluation of Track Support Stiffness on the Various Track Type in Urban Transit (도시철도 궤도구조별 궤도지지강성 평가를 위한 실험적 연구)

  • Lee, Dong-Wook;Park, Yong-Gul;Choi, Jung-Youl
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.3
    • /
    • pp.262-270
    • /
    • 2011
  • Track support stiffness which affected track maintenance and riding comfort had a big effect on the track and train. Also, track support stiffness of the track design which was based on theory differs from track support stiffness of the track generated on the field. Track support stiffness was generated by several factors such as dynamic wheel loads, vertical displacement of track, and stress at rail bottom on the field test. With the results of the field test was compared with theoretical value. This paper analyzed that track support stiffness of ballast depended on condition of ballast, and support stiffness of concrete track also depended on the characteristic of track structures such as, normal elastic fastening system, rail floating system and sleeper floating system. However, on the ballast and concrete track, the designed track support stiffness was underestimated less than the measured track support stiffness. When the track condition was estimated on service line, it would not consider the track condition on the field. Therefore, this study proposed the various track type and the range of track support stiffness based on the experimental test.

Development of the Traffic Signal Control Strategy and Signal Controller for Tram (트램 운영을 위한 신호제어 전략 및 신호제어기의 개발)

  • Lee, In-Kyu;Kim, Youngchan;Lee, Joo Il;Oh, Seung Hwoon
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.1
    • /
    • pp.70-80
    • /
    • 2015
  • In recent years, tram has been the focus of a new mode of public transportation that can solve traffic jams and decrease public transit usage and environmental problem. This research is in the works to develop a tram signal controller and signal control strategies, and aim to resolve the problem of what could happen if a tram system was installed in general road. We developed the hierarchical signal control strategies to obtain a minimum tram bandwidth and to minimize vehicle delay, in order to perform a priority control to include passive and active signal priority control strategies. The strategies was produced for S/W and H/W, it is based in standard traffic signal controller. We conducted a micro simulation test to evaluate the hierarchical signal control strategies, which showed that the developed optimization model is effective to prevent a tram's stop in intersection, to reduce a tram's travel time and vehicle's delay.

Development of System Requirement Management Database System from User-centered Scenario (사용자 편의를 고려한 시스템 요구사항 관리 데이터베이스 구축)

  • Jin, Moon-Sub;Park, Chan-Young;Choi, Chunho;Chung, Kyung-Ryul
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.2
    • /
    • pp.199-204
    • /
    • 2013
  • In this paper, a new system requirement management tool and its application on the Urban Transit Maglev Project were introduced. In most R&D projects on complexity system such as transportation system, Systems Engineering(SE) activities are included on each project, and SE teams are using commercial computer-based tools to perform the SE activities. Even though SE tools help to manage huge data and documents on engineering efficiently, but well-designed functions of SE tools which support SE activities are not sufficiently used on the whole process of system engineering. In order to computer-based SE tools are to be effectively used on project management, most engineers who takes engineering and coordination roles, at least sub-project managers should be familiar to the tool and could be easily use it, but usability of commercial SE tools are very difficult for normal engineers with no experience on SE activities and SE tools. To overcome this difficulty, we developed a new system requirement management tool considering each user's scenario on using engineering tools. The developed tool could not cover whole SE processes, but designed to perform requirement engineering such as system requirements(SRs) management, specification management, traceability management, SRs' verification activity management and so on. All the entities on SR database are inter-connected by pre-recognized traceabilities, so even non-specialists on SE can easily browse the database and find entities concern, and linked information such as interacted entities, legal or engineering constraints, coordination documents, status of development and verification and so on. Also functions for SR verification tools, TPM(Technical Performance Measure) tools, DB searching tools with traceability, and report generation tools are included on the system.

Study on Temperature Characteristics of Friction Stir Welding Process by Numerical Analysis (수치해석을 활용한 마찰교반용접 공정의 온도 특성 분석 연구)

  • Kim, Moosun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.513-518
    • /
    • 2019
  • Friction Stir Welding is a welding technique for metal materials that utilizes the heat generated by friction between the material to be welded and the welding tool that rotates at high speed. In this study, a numerical analysis method was used to analyze the change in the internal temperature of the welded material during friction stir welding. As the welding target material, AZ31 magnesium alloy was applied and the welding phenomenon was considered a flow characteristic, in which a melting-pool was formed. FLUENT was used as the numerical tool to perform the flow analysis. For flow analysis of the welding process, the welding material was assumed to be a high viscosity Newtonian fluid, and the boundary condition of the welding tool and the material was considered to be the condition that friction and slippage occur simultaneously. Analyses were carried out for various rotational speeds and the translational moving speed of the welding tool as variables. The analysis results showed that the higher the rotational speed of the welding tool and the slower the welding tool movement speed, the higher the maximum temperature in the material increases. Moreover, the difference in the rotational speed of the welding tool has a greater effect on the temperature change.

A Study on Effects of Energy Saving by Applying Energy Storage System (에너지저장시스템 적용에 의한 에너지절감 효과에 관한 연구)

  • An, Cheon-Heon;Lee, Han-Min;Kim, Gil-Dong;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.4
    • /
    • pp.582-589
    • /
    • 2009
  • The energy generated by braking vehicle would simply be converted into waste heat by its braking resistors if no other vehicle is accelerating at exactly the same time. Up to 45% of the tractive power of vehicles capable of returning energy to the power supply can be regenerated during braking and that this energy can be used to feed vehicles which are accelerating at the same time. Such synchronized braking and accelerating can not be coordinated, the ESS(energy storage system, here after) stores the energy generated during braking and discharges it again when a vehicle accelerates. The ESS is able to store and discharge energy extremely quickly, consequently enabling a complete exchange of energy between vehicles, even if they are not braking and accelerating at precisely the same time, as is most frequently the case in everyday service. The energy saving rate is related to the headway. If the headway is long/short, the energy saving goes up/down, When the headway is short, the ESS can not save much regenerative energy. The headway of SeoulMetro line 2 as the worst case is very short in Korea urban transit system. So, the energy saving rate will be very low. If the ESSs are applied to another railway system, we can expect that the effectiveness is better than the results of SeoulMetro line 2. This paper presents effects of energy saving obtained by applying the ESS to SeoulMetro line 2.

Parameter Study of Track Deformation Analysis by Adjacent Excavation Work on Urban Transit (인접굴착공사에 따른 지하철 궤도 변형 해석을 위한 매개변수 연구)

  • Choi, Jung-Youl;Cho, Soo-Il;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.669-675
    • /
    • 2020
  • In this study, 3D analysis was compared in evaluating the track deformation of subway structures during adjacent excavation. For the 3D analysis model, the boundary conditions of the tunnel model and the application level of the ground water were analyzed as variables. As the result of the effects of track irregularity using the 3D model, the analysis model considering the site ground water level instead of the design values and changing the constraint of the boundary condition is more reasonable. In addition, the influence of track irregularity due to the boundary condition and load condition of the analytical model is more obvious in the factors directly affected by the longitudinal relative displacement of the rail, such as alignment, cross level and gauge irregularity. Therefore, the evaluation on track stability according to adjacent excavation work was appropriate to analysed the longitudinal deformation of the track by using 3D model that could be investigate the deformation of rail. In addition, the boundary condition and load condition(ground water level) of the numerical model was important for accurate analysis results.