• Title/Summary/Keyword: Urban meteorology

Search Result 102, Processing Time 0.032 seconds

An Environmental Impact Assessment System for Microscale Winds Based on a Computational Fluid Dynamics Model (전산유체역학모형에 근거한 미기상 바람환경 영향평가 시스템)

  • Kim, Kyu Rang;Koo, Hae Jung;Kwon, Tae Heon;Choi, Young-Jean
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.3
    • /
    • pp.337-348
    • /
    • 2011
  • Urban environmental problem became one of major issues during its urbanization processes. Environmental impacts are assessed during recent urban planning and development. Though the environmental impact assessment considers meteorological impact as a minor component, changes in wind environment during development can largely affect the distribution pattern of air temperature, humidity, and pollutants. Impact assessment of local wind is, therefore, a major element for impact assessment prior to any other meteorological impact assessment. Computational Fluid Dynamics (CFD) models are utilized in various fields such as in wind field assessment during a construction of a new building and in post analysis of a fire event over a mountain. CFD models require specially formatted input data and produce specific output files, which can be analyzed using special programs. CFD's huge requirement in computing power is another hurdle in practical use. In this study, a CFD model and related software processors were automated and integrated as a microscale wind environmental impact assessment system. A supercomputer system was used to reduce the running hours of the model. Input data processor ingests development plans in CAD or GIS formatted files and produces input data files for the CFD model. Output data processor produces various analytical graphs upon user requests. The system was used in assessing the impacts of a new building near an observatory on wind fields and showed the changes by the construction visually and quantitatively. The microscale wind assessment system will evolve, of course, incorporating new improvement of the models and processors. Nevertheless the framework suggested here can be utilized as a basic system for the assessment.

Implementing the Urban Effect in an Interpolation Scheme for Monthly Normals of Daily Minimum Temperature (도시효과를 고려한 일 최저기온의 월별 평년값 분포 추정)

  • 최재연;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.4
    • /
    • pp.203-212
    • /
    • 2002
  • This study was conducted to remove the urban heat island effects embedded in the interpolated surfaces of daily minimum temperature in the Korean Peninsula. Fifty six standard weather stations are usually used to generate the gridded temperature surface in South Korea. Since most of the weather stations are located in heavily populated and urbanized areas, the observed minimum temperature data are contaminated with the so-called urban heat island effect. Without an appropriate correction, temperature estimates over rural area or forests might deviate significantly from the actual values. We simulated the spatial pattern of population distribution within any single population reporting district (city or country) by allocating the reported population to the "urban" pixels of a land cover map with a 30 by 30 m spacing. By using this "digital population model" (DPM), we can simulate the horizontal diffusion of urban effect, which is not possible with the spatially discontinuous nature of the population statistics fer each city or county. The temperature estimation error from the existing interpolation scheme, which considers both the distance and the altitude effects, was regressed to the DPMs smoothed at 5 different scales, i.e., the radial extent of 0.5, 1.5, 2.5, 3.5 and 5.0 km. Optimum regression models were used in conjunction with the distance-altitude interpolation to predict monthly normals of daily minimum temperature in South Korea far 1971-2000 period. Cross validation showed around 50% reduction in terms of RMSE and MAE over all months compared with those by the conventional method.conventional method.

Characteristics of Urban Meteorology in Seoul Metropolitan Area of Korea (수도권 지역의 도시 기상 특성)

  • Kim, Yeon-Hee;Choi, Da-Young;Chang, Dong-Eon
    • Atmosphere
    • /
    • v.21 no.3
    • /
    • pp.257-271
    • /
    • 2011
  • The aim of this study is to examine weather modification by urbanization and human activities. The characteristics of the urban heat island (UHI) and precipitation in Seoul metropolitan area of Korea are investigated to demonstrate that cities can change or modify local and nearby weather and climate, and to confirm that cities can initiate convection, change the behavior of convective precipitation, and enhance downstream precipitation. The data used in this study are surface meteorological station data observed in Seoul and its nearby 5 cities for the period of 1960 to 2009, and 162 Automatic Weather System stations data observed in the Seoul metropolitan area from 1998 to 2009. Air temperature and precipitation amount tend to increase with time, and relative humidity decreases because of urbanization. Similar to previous studies for other cities, the average maximum UHI is weakest in summer and is strong in autumn and winter, and the maximum UHI intensity is more frequently observed in the nighttime than in the daytime, decreases with increasing wind speed, and is enhanced for clear skies. Relatively warm regions extend in the east-west direction and relatively cold regions are located near the northern and southern mountains inside Seoul. The satellite cities in the outskirts of Seoul have been rapidly built up in recent years, thus exhibiting increases in near-surface air temperature. The yearly precipitation amount during the last 50 years is increased with time but rainy days are decreased. The heavy rainfall events of more than $20mm\;hr^{-1}$ increases with time. The substantial changes observed in precipitation in Seoul seem to be linked with the accelerated increase in the urban sprawl in recent decades which in turn has induced an intensification of the UHI effect and enhanced downstream precipitation. We also found that the frequency of intense rain showers has increased in Seoul metropolitan area.

Improvement of Vegetation Cooling Effects in BioCAS for Better Estimation of Daily Maximum Temperature during Heat Waves - In Case of the Seoul Metropolitan Area - (식생냉각효과 적용을 통한 BioCAS의 폭염기간 일 최고기온 추정 개선 - 서울 및 수도권지역을 중심으로 -)

  • Lee, Hankyung;Yi, Chaeyeon;Kim, Kyu Rang;Cho, Changbum
    • Atmosphere
    • /
    • v.29 no.2
    • /
    • pp.131-147
    • /
    • 2019
  • On the urban scale, Micro-climate analysis models for urban scale have been developed to investigate the atmospheric characteristics in urban surface in detail and to predict the micro-climate change due to the changes in urban structure. BioCAS (Biometeorological Climate Impact Assessment System) is a system that combines such analysis models and has been implemented internally in the Korea Meteorological Administration. One of role in this system is the analysis of the health impact by heat waves in urban area. In this study, the vegetation cooling models A and B were developed and linked with BioCAS and evaluated by the temperature drop at the vegetation areas during ten selected heat-wave days. Smaller prediction errors were found as a result of applying the vegetation cooling models to the heat-wave days. In addition, it was found that the effects of the vegetation cooling models produced different results according to the distribution of vegetation area in land cover near each observation site - the improvement of the model performance on temperature analysis was different according to land use at each location. The model A was better fitted where the surrounding vegetation ratio was 50% or more, whereas the model B was better where the vegetation ratio was less than 50% (higher building and impervious areas). Through this study, it should be possible to select an appropriate vegetation cooling model according to its fraction coverage so that the temperature analysis around built-up areas would be improved.

Modeling of High Density of Ozone in Seoul Area with Non-Linear Regression (비선형 회귀 모형을 이용한 서울지역 오존의 고농도 현상의 모형화)

  • Chung, Soo-Yeon;Cho, Ki-Heon
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.865-877
    • /
    • 2009
  • While characterized initially as an urban-scale pollutant, ozone has increasingly been recognized as a regional and even global-scale phenomenon. The complexity of environmental data dynamics often requires models covering non-linearity. This study deals with modeling ozone with meteorology in Seoul area. The relationships are used to construct a nonlinear regression model relating ozone to meteorology. The model can be used to estimate that part of the trend in ozone levels that cannot be accounted for by trends in meteorology.

A Study on the Urban Heat Simulation Model Incorporating the Climate Changes (기후변화가 반영된 도시 열환경 시뮬레이션 모델의 연구)

  • Kang, Jonghwa;Kim, Wansoo;Yun, Jeongim;Lee, Joosung;Kim, Seogcheol
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.5
    • /
    • pp.697-707
    • /
    • 2018
  • A fast running model comprising the climate change effects is proposed for urban heat environment simulations so as to be used in urban heat island studies and/or the urban planning practices. By combining Hot City Model, a high resolution urban temperature prediction model utilizing the Lagrangian particle tracing technique, and the numerical weather simulation data which are constructed up to year of 2100 under the climate change scenarios, an efficient model is constructed for simulating the future urban heat environments. It is applicable to whole city as well as to a small block area of an urban region, with the computation time being relatively short, requiring the practically manageable amount of the computational resources. The heat environments of the entire metropolitan Seoul area in South Korea are investigated with the aid of the model for the present time and for the future. The results showed that the urban temperature gradually increase up to a significant level in the future. The possible effects of green roofs on the buildings are also studied, and we observe that green roofs don't lower the urban temperature efficiently while making the temperature fields become more homogeneous.

Urban Climate Mapping - The Case of Sanggye 4-Dong - (도시기후지도의 작성 -상계 4동을 중심으로-)

  • 송영배
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.6
    • /
    • pp.27-36
    • /
    • 2002
  • The objective of this study is to improve the quality of the atmospheric environment by incorporating the factors of meteorology and urban climate into the field of urban and environmental planning. To this end, we have conducted a study on CLIMATOP and the mapping of urban climate, which are basic data used to analyze changes in climatic factors and the stagnation and accumulation of air pollutants. In particular, we focused on understanding the formation and movement of cold fresh air and its influx into urban areas by measuring and analyzing climatic factors. As a study result, classification criteria far CLIMATOP and a urban climatic map were made. In addition, we analyzed a digital elevation model, climatic data, and isothermal curves. As a result, we identified the corridor through which cold fresh air moves. We also observed that the temperature of the fluxed cold fresh air increased as land use changed. When the results of this study are applied to urban re-development and re-building projects, which require preliminary environmental assessment and environmental impact assessment, the practice proposed by this study is expected to contribute to the natural purification of air pollution activating the movement of cold fresh air and its influx into urban areas.

A Study on the Improvement Repeatability and Accuracy of the Analysis Method for SF6 of Trace Level (극미량 수준의 SF6 측정법에 따른 재현성 및 정확도 향상에 관한 연구)

  • Yoo, Heejung;Choe, Hongwoo;Lee, Sepyo;Kim, Jongho;Han, Sangok;Ryoo, Sangboom
    • Journal of the Korean Society of Urban Environment
    • /
    • v.18 no.4
    • /
    • pp.523-530
    • /
    • 2018
  • Kyoto Protocol, adopted in 1997, set the obligation to reduce $CO_2$, $CH_4$, $N_2O$, HFCs, PFCs, and $SF_6$ in developed countries during 1st promised period. $SF_6$ has been drawing a lot of attention since the Kyoto Protocol because once it is released into the atmosphere, it not only stays in the atmosphere for more than 3,200 years but also emits 22,800 times stronger global warming potential at the same concentrations as $CO_2$ if remains in the atmosphere for 100 years. This study introduces 12 methods for $SF_6$ of measuring trace. $SF_6$ of trace level in the atmosphere correctly, the measurement method was changed and as a result, when the back flush method was applied to the pre-concentration system that used low-temperature concentration and high-temperature desorption system, which used Carboxen-1000 adsorption trap, the effect was the best.

A Study on High-resolution Numerical Simulation with Detailed Classification of Landuse and Anthropogenic Heat in Seoul Metropolitan area (수도권지역의 지표이용도 및 인공열 상세적용에 따른 고해상도 수치실험 연구)

  • Lee, Hankyung;Jee, Joon-Bum;Min, Jae-Sik
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.4
    • /
    • pp.232-245
    • /
    • 2017
  • In this study, the high-resolution numerical simulation results considering landuse characteristics are analyzed by using single layer Urban Canopy Model (UCM) in Weather Research Forecast (WRF). For this, the impact of urban parameters such as roughness length and anthropogenic heat in UCM is analyzed. These values are adjusted to Seoul metropolitan area in Korea. The results of assessment are verified against observation from surface and flux tower. Forecast system equipped with UCM shows an overall improvement in the simulations of meteorological parameters, especially temperature at 2 m, surface sensible and latent heat flux. Major contribution of UCM is appreciably found in urban area rather than non-urban. The non-urban area is indirectly affected. In simulated latent heat flux, applying UCM is possible to simulate the change similarly with observations on urban area. Anthropogenic heat employed in UCM shows the most realistic results in terms of temperature and surface heat flux, indicating thermodynamic treatment of UCM could enhance the skills of high resolution forecast model in urban and non-urban area.

Diurnal Variations in the Horizontal Temperature Distribution using the High Density Urban Climate Observation Network of Daegu in Summer (고밀도 도시기후관측 망 자료를 이용한 대구의 여름철 기온 수평 공간 분포의 일변화)

  • Kim, Sang-Hyun;Kim, Baek-Jo;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.25 no.2
    • /
    • pp.259-265
    • /
    • 2016
  • We analyzed diurnal variations in the surface air temperature using the high density urban climate observation network of Daegu in summer, 2013. We compared the time elements, which are characterized by the diurnal variation of surface air temperature. The warming and cooling rates in rural areas are faster than in urban areas. It is mainly due to the difference of surface heat capacity. In addition, local wind circulation also affects the discrepancy of thermal spatiotemporal distribution in Daegu. Namely, the valley and mountain breezes affect diurnal variation of horizontal distribution of air temperature. During daytimes, the air(valley breeze) flows up from urban located at lowlands to higher altitudes of rural areas. The temperature of valley breeze rises gradually as it flows from lowland to upland. Hence the difference of air temperature decreases between urban and rural areas. At nighttime, the mountains cool more rapidly than do low-lying areas, so the air(mountain breeze) becomes denser and sinks toward the valleys(lowlands). As the result, the air temperature becomes lower in rural areas than in urban areas.