DOI QR코드

DOI QR Code

A Study on High-resolution Numerical Simulation with Detailed Classification of Landuse and Anthropogenic Heat in Seoul Metropolitan area

수도권지역의 지표이용도 및 인공열 상세적용에 따른 고해상도 수치실험 연구

  • Lee, Hankyung (Weather Information Service Engine, Hankuk University of Foreign Studies) ;
  • Jee, Joon-Bum (Weather Information Service Engine, Hankuk University of Foreign Studies) ;
  • Min, Jae-Sik (Weather Information Service Engine, Hankuk University of Foreign Studies)
  • 이한경 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 지준범 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 민재식 (한국외국어대학교 차세대도시농림융합기상사업단)
  • Received : 2017.08.18
  • Accepted : 2017.11.06
  • Published : 2017.12.30

Abstract

In this study, the high-resolution numerical simulation results considering landuse characteristics are analyzed by using single layer Urban Canopy Model (UCM) in Weather Research Forecast (WRF). For this, the impact of urban parameters such as roughness length and anthropogenic heat in UCM is analyzed. These values are adjusted to Seoul metropolitan area in Korea. The results of assessment are verified against observation from surface and flux tower. Forecast system equipped with UCM shows an overall improvement in the simulations of meteorological parameters, especially temperature at 2 m, surface sensible and latent heat flux. Major contribution of UCM is appreciably found in urban area rather than non-urban. The non-urban area is indirectly affected. In simulated latent heat flux, applying UCM is possible to simulate the change similarly with observations on urban area. Anthropogenic heat employed in UCM shows the most realistic results in terms of temperature and surface heat flux, indicating thermodynamic treatment of UCM could enhance the skills of high resolution forecast model in urban and non-urban area.

본 연구에서는 지표이용도 특성이 반영된 고해상도 기상예측모델 도시캐노피모형(WRF-UCM)의 수치모의 실험을 통해 도심과 전원 지역 기상변수 및 에너지수지 변화 경향에 대하여 분석하였다. UCM을 적용하지 않은 WRF 모의 결과를 규준실험으로 설정하였으며, 거칠기 길이 변화와 인공열 고려에 따라 총 4가지 실험을 비교하여 분석하였다. UCM을 적용한 실험에서 거칠기 길이의 수정 전과 후의 기온과 풍속의 변화가 크게 나타나지 않았으나, 인공열을 고려한 UCM의 모의 기온과 풍속은 고려하기 전보다 크게 차이가 나타났다. 모의 실험 간의 차이는 전원 지역보다 도시 지역에서 더 크게 나타났다. 자동기상관측(AWS) 기온 관측 자료에 대하여 UCM에 인공열을 고려한 결과의 평방근오차(RMSE)가 가장 적었다. 또한, 차세대도시농림융합기상사업단의 중랑 에너지수지관측소지점의 현열플럭스 관측자료에 대한 검증 수치는 인공열을 고려하여 UCM을 적용한 실험의 RMSE와 BIAS 값이 가장 낮았다. 인공열을 고려한 UCM 적용이 도심의 현열플럭스 모의 향상에 영향을 주었다. 또한, UCM을 적용한 후 도시 지역 잠열플럭스의 변화 모의를 분석할 수 있었으며, 도심과 전원 지역 모두 UCM 적용 후에 관측 값과 더 가까운 검증 수치를 나타냈다. 결과적으로 WRF 모델에 UCM의 적용이 지표플럭스 모의 향상에 기여하는 것으로 나타났다.

Keywords

References

  1. Adachi, S. A., F. Kimura, H. Kusaka, M. G. Duda, Y. Yamagata, H. Seya and T. Aoyagi, 2014: Moderation of summertime heat island phenomena via modification of the urban form in the Tokyo metropolitan area. Journal of Applied Meteorology and Climatology 53(8), 1886-1900. https://doi.org/10.1175/JAMC-D-13-0194.1
  2. Bokaie, M., M. K. Zarkesh, P. D. Arasteh and A. Hosseini, 2016: Assessment of urban heat island based on the relationship between land surface temperature and land use/land cover in Tehran. Sustainable Cities and Society 23, 94-104. https://doi.org/10.1016/j.scs.2016.03.009
  3. Byon, J. Y., Y. J. Choi and B. G. Seo, 2010: Evaluation of urban weather forecast using WRF-UCM (Urban Canopy Model) over Seoul. Atmosphere 20(1), 13-26.
  4. Chen, F., X. Yang and W. Zhu, 2014: WRF simulations of urban heat island under hot-weather synoptic conditions: The case study of Hangzhou City, China. Atmospheric research 138, 364-377. https://doi.org/10.1016/j.atmosres.2013.12.005
  5. Chen, G., L. Zhao and A. Mochida, 2016: Urban heat island simulations in Guangzhou, China, using the coupled WRF/UCM model with a land use map extracted from remote sensing data. Sustainability 8(7), 628pp. https://doi.org/10.3390/su8070628
  6. Choi, J. Y. and J. I. Yun, 2002: Implementing the urban effect in an interpolation scheme for monthly normals of daily minimum temperature. Korean Journal of Agricultural and Forest Meteorology 4(4), 203-212.
  7. Chu, X., L. Xue, B. Geerts, R. Rasmussen and D. Breed, 2014: A case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. Part I: Observations and model validations. Journal of Applied Meteorology and Climatology 53(10), 2264-2286. https://doi.org/10.1175/JAMC-D-14-0017.1
  8. Dong, Y., A. C. G. Varquez, and M. Kanda, 2017: Global anthropogenic heat flux database with high spatial resolution. Atmospheric Environment 150, 276-294. https://doi.org/10.1016/j.atmosenv.2016.11.040
  9. Gross, G., 2014: On the parametrization of urban land use in mesoscale models. Boundary-layer meteorology 150, 319-326. https://doi.org/10.1007/s10546-013-9863-5
  10. Grossman-Clarke, S., J. A. Zehnder, T. Loridan and C. S. B. Grimmond, 2010: Contribution of land use changes to near-surface air temperatures during recent summer extreme heat events in the Phoenix metropolitan area. Journal of Applied Meteorology and Climatology 49(8), 1649-1664. https://doi.org/10.1175/2010JAMC2362.1
  11. Hwang, M. K., I. B. Oh and Y. K. Kim, 2012: Numerical modeling for the effect of high-rise buildings on meteorological fields over the coastal area using urbanized MM5. Atmospheric Environment 28, 495-505.
  12. Holt, T. and J. Pullen, 2007: Urban canopy modeling of the New York City metropolitan area: A comparison and validation of single-and multilayer parameterizations. Monthly Weather Review 135(5), 1906-1930. https://doi.org/10.1175/MWR3372.1
  13. Jee, J. B., M. Jang, C. Y. Yi, I. S. Zo, B. Y. Kim, M. S. Park and Y. J. Choi, 2016: Sensitivity analysis of the high-resolution WISE-WRF model with the use of surface roughness length in Seoul metropolitan areas. Atmosphere 26, 111-126. https://doi.org/10.14191/Atmos.2016.26.1.111
  14. Kanda, M., A. Inagaki, T. Miyamoto, M. Gryschka and S. Raasch, 2013: A new aerodynamic parametrization for real urban surfaces. Boundary-layer meteorology 148(2), 357-377. https://doi.org/10.1007/s10546-013-9818-x
  15. Kang, M. S., M. S. Park, M. H. Choi, and S. H. Park, 2015: Surface Energy Balance at an Urban Residential Area in Seoul, Korea. 15th EMS / 12th ECAM.
  16. Kastner-Klein, P., R. Berkowicz and R. Britter, 2004: The influence of street architecture on flow and dispersion in street canyons. Meteorology and Atmospheric Physics 87, 121-131.
  17. Kim, D. W., Y. H. Kim, K. H. Kim, S. S. Sin, D. K. Kim, Y. J. Hwang, J. L. Park, D. Y. Choi, and Y. H. Lee, 2012: Effect of urbanization on rainfall events during the 2010 summer intensive observation period over Seoul metropolitan area. Journal of The Korean Earth Science Society 33(3), 219-232. https://doi.org/10.5467/JKESS.2012.33.3.219
  18. Kwon, T. H., M. S. Park, C. Yi, and Y. J. Choi, 2014: Effects of different averaging operators on the urban turbulent fluxes. Atmosphere 24(2), 197-206. https://doi.org/10.14191/Atmos.2014.24.2.197
  19. Kusaka, H., H. Kondo, Y. Kikegawa and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: comparison with multi- layer and slab models. Boundary-Layer Meteorology 101(3), 329-358. https://doi.org/10.1023/A:1019207923078
  20. Kusaka, H., and F. Kimura, 2004: Coupling a single-layer urban canopy model with a simple atmospheric model: Impact on urban heat island simulation for an idealized case. Journal of the Meteorological Society of Japan 82(1), 67-80. https://doi.org/10.2151/jmsj.82.67
  21. Lee, J. H., J. W. Choi and J. J. Kim, 2009: The effects of an urban renewal plan on detailed air flows in an urban area. Journal of the Korea Association of Geographic Information Studies 12, 69-81.
  22. Lee, S. H., J. S. Ahn, S. W. Kim, and H. D., Kim, 2010: Multiple albedo variation caused by the shadow effect of urban building and its impacts on the urban surface heat budget. Journal of The Korean Earth Science Society 31(7), 738-748. https://doi.org/10.5467/JKESS.2010.31.7.738
  23. Lee, S. J., Y. H. Choi, J. H. Jung, M. S. Won, and G. H. Lim, 2015: Development of optimal modeling system for analyzing mountain micrometeorology. Korean Journal of Agricultural and Forest Meteorology 17(2), 165-172. https://doi.org/10.5532/KJAFM.2015.17.2.165
  24. Lee, S. J., J. Song, and Y. J. Kim, 2016: The NCAM Land-Atmosphere Modeling Package (LAMP) version 1: Implementation and evaluation. Korean Journal of Agricultural and Forest Meteorology 18(4), 307-319. https://doi.org/10.5532/KJAFM.2016.18.4.307
  25. Lee, B., K. Y. Nam., D. K. Lee, S. S. Sin, B. C. Choi, and H. K. Kwon, 2014: The generating of input data and process method for WRF-UCM by using GIS, technical report, NIMR-TN-2014-000.
  26. Lee, B. R., D. G. Lee, K. Y. Nam, Y. G. Lee and B. J. Kim, 2015: Study on heat environment changes in Seoul metropolitan area using WRF-UCM: A comparison between 2000 and 2009. Atmosphere 25(3), 483-499. https://doi.org/10.14191/Atmos.2015.25.3.483
  27. Lee Y. H. and K. H. Min, 2016: Impact of urban canopy and high horizontal resolution on summer convective rainfall in urban area: A case study of rainfall events on 16 august 2015. Atmosphere 26(1), 141-158. https://doi.org/10.14191/Atmos.2016.26.1.141
  28. Lim, A. Y., J. W. Roh, J. B. Jee, and Y. J. Choi, 2015: Sensitivity experiments of vertical resolution and planetary boundary layer parameterization schemes on the Seoul metropolitan area using WRF model. The Journal of Korean Earth Science Society 36(6), 553-556. https://doi.org/10.5467/JKESS.2015.36.6.553
  29. Lin, C. Y., C. J. Su, H. Kusaka, Y. Akimoto, Y. F. Sheng, C. Huang Jr and H. H. Hsu, 2016: Impact of an improved WRF urban canopy model on diurnal air temperature simulation over northern Taiwan. Atmospheric chemistry and physics, 16(3) 1809-1822. https://doi.org/10.5194/acp-16-1809-2016
  30. Macdonald, R. W., R. F. Griffiths and D. J. Hall, 1998: An improved method for the estimation of surface roughness of obstacle arrays. Atmospheric environment 32(11), 1857-1864. https://doi.org/10.1016/S1352-2310(97)00403-2
  31. Park, S. J., D. Y. Kim and J. J. Kim, 2014: Effects of atmospheric stability and surface temperature on microscale local airflow in a hydrological suburban area. Atmosphere 23, 13-21.
  32. Park, S. H., J. B. Jee, and C. Y. Yi, 2015: Sensitivity test of the numerical simulation with high resolution topography and landuse over Seoul metropolitan and surrounding areas. Atmosphere 25, 309-322. https://doi.org/10.14191/Atmos.2015.25.2.309
  33. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda and J. G. Powers, 2014: A description of the advanced research WRF version 3. NCAR Technical Note-475+ STR. NCAR, Boulder, CO.
  34. Tewari, M., F. Chen and H. Kusaka, 2006: Implementation and evaluation of a single-layer urban canopy model in WRF/Noah. In WRF users workshop 2006.
  35. Vahmani, P. and T. S. Hogue, 2015: Urban irrigation effects on WRF‐UCM summertime forecast skill over the Los Angeles metropolitan area. Journal of Geophysical Research: Atmospheres 120(19), 9869-9881. https://doi.org/10.1002/2015JD023239
  36. Vahmani, P. and G. A. Ban Weiss, 2016: Impact of remotely sensed albedo and vegetation fraction on simulation of urban climate in WRF-urban canopy model: A case study of the urban heat island in Los Angeles. Journal of Geophysical Research: Atmospheres 121(4), 1511-1531. https://doi.org/10.1002/2015JD023718