• Title/Summary/Keyword: Urban high-rise buildings

Search Result 562, Processing Time 0.024 seconds

Beehive (Hexagrid), New Innovated Structural System for Tall Buildings

  • Nejad, Peyman Askari
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.4
    • /
    • pp.251-262
    • /
    • 2016
  • Tall Buildings have been one of the most prominent symbols of economic growth for nearly a century. Yet, in the aftermath of the tragedies of September 11, "signature" Tall buildings have become the focus of much debate. The structural systems today are undergoing a major evolution to address the ability of providing flexibility in the design and use of the building together with sustainability (Green) and cost-effective system. This paper describes a new invented structural system, evolutionary structural analysis and design of Tall buildings, which involves the entire analysis process, including conceptual and design stages and comparison with the existing Tall building. This study presents an new innovative structural system, Beehive (Hexagrid), for Tall buildings. The final results are achieved by modeling an 80 story Tall building with the optimized angle and topology of hexagon members by using a computer analysis, ETABS finite element analysis. The objective function of this system is to use one structural system in order to both maximize Eigen frequency for resisting dynamic responses and minimize mean compliance for static responses. Finite element analysis is carried out by using standardized materials. Optimal Hexagrid topologies with the highest stiffness are finally determined to resist both static and dynamic behaviors. Holistic design integration approaches between structures and facades to save energy for environmental control are studied. Innovative design ideas to control structural motion as well as to utilize that motion to harness energy are discussed. Considering abundant emergence of tall buildings all over the world in recent years, the importance of the studies presented in this paper cannot be overemphasized for constructing more sustainable built environments.

The Structural Engineering Design And Construction Of The Tallest Building In Europe Lakhta Center, St. Petersburg. Russia

  • Abdelrazaq, Ahmad;Travush, Vladimir;Shakhvorostov, Alexey;Timofeevich, Alexander;Desyatkin, Mikhail;Jung, Hyungil
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.3
    • /
    • pp.283-300
    • /
    • 2020
  • The Lakhta Center is a Multifunction Complex Development (MFCD) consisting of 1) an 86 story office tower rising 462 m above the ground to provide high-end offices for Gazprom Neft and Gazprom Group affiliates 2) a Multi-Function Building (MFB) that includes, a scientific/educational center, a sport center, a children's technopark, a planetarium, a multi-transformable hall, an exhibition center, shops, restaurants, and other public facilities 3) a Stylobate 4) "The Arch, which forms the main entrance to the tower, restaurants, and cafes 5) underground parking and 6) a wide range of large public plazas. While each of the MFCD buildings is technically challenging in its own right, the focus of the paper is to present the development and integration of the structural and foundation systems of the bowed, tapered, and twisted shape of the tower into the fabric of the tallest Tower in Europe.

Performance of Adhesives in Glulam after Short Term Fire Exposure

  • Quiquero, Hailey;Chorlton, Bronwyn;Gales, John
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.299-311
    • /
    • 2018
  • As engineered timber such as Glulam is seeing increasing use in tall timber buildings, building codes are adapting to allow for this. In order for this material to be used confidently and safely in one of these applications, there is a need to understand the effects that fire can have on an engineered timber structural member. The post-fire resilience aspect of glulam is studied herein. Two sets of experiments are performed to consider the validity of zero strength guidance with respect to short duration fire exposure on thin glulam members. Small scale samples were heated in a cone calorimeter to different fire severities. These samples illustrated significant strength loss but high variability despite controlled quantification of char layers. Large scale samples were heated locally using a controlled fuel fire in shear and moment locations along the length of the beam respectively. Additionally, reduced cross section samples were created by mechanically carving a way an area of cross section equal to the area lost to char on the heated beams. All of the samples were then loaded to failure in four-point (laterally restrained) bending tests. The beams that have been burnt in the shear region were observed as having a reduction in strength of up to 34.5% from the control beams. These test samples displayed relatively little variability, apart from beams that displayed material defects. The suite of testing indicated that zero strength guidance may be under conservative and may require increasing from 7 mm up to as much as 23 mm.

Structural Characteristics of Preloaded Deep Deck Composite Slabs with Tenns

  • Lee, Tae-Hun;Kyung, Jae-Hwan;Song, Jong-Wook;Choi, Sung-Mo
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.187-195
    • /
    • 2020
  • As deep decks are commonly used in construction fields and high-rise building. etc, the slim floor system is increasingly employed. But, the drawback of the slim floor system is that the use of 250 mm deep decks in a structure having a clear span of more than 6 m because of deflection and flexural buckling. This study suggests a non-support construction method where tendons are installed in the deep decks of the slim floor structure to introduce preload in order to control deflection in a structure having a clear span of 9 m. Loading tests were conducted to verify the composite effect and flexural capacity of the preloaded deep deck composite slab and evaluate the serviceability of the supportless construction method. The results showed the complete composite behavior of the preloaded deep deck composite slab with tendons. The specimens satisfied deflection limit and the working load was approximately 25% of the maximum load capacity. It is deemed that the cross-sectional area and yield strength of the deck plate should be taken into account in slab design and the yield strength and diameter of the tendon should be determined with the pre-tension taken into consideration.

Experimental and Analytical Investigation of Web-transferred Diagrid Node under Seismic Condition

  • Jeong, Inyong;Ju, Young K.;Kim, Sang-Dae
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.1
    • /
    • pp.29-36
    • /
    • 2012
  • The diagrid structural system is considered to be not only the best structural system for constructing free form structures, but also a very effective system in resisting lateral load. As a newly investigated structural system, its complicated node has not yet been completely investigated and minimal experimentation of manufacturing and constructing the system have been conducted. Therefore, the constructing cost of the diagrid structural system is still comparatively high. In this paper, the cyclic performance of a diagrid node with an H-section brace will be discussed. Design details that consider productivity were proposed and their structural performances were assessed through experimental and analytical investigation.

A Study on Optimum Distribution of Story Shear Force Coefficient for Seismic Design of Multi-story Structure

  • Oh, Sang Hoon;Jeon, Jongsoo
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.121-145
    • /
    • 2014
  • The story shear force distributions of most seismic design codes generally reflect the influences of higher vibration modes based on the elastic deformations of structures. However, as the seismic design allows for the plastic behavior of a structure, the story shear force distribution shall be effective after it is yielded due to earthquake excitation. Hence this study conducted numerical analyses on the story shear force distributions of most seismic design codes to find out the characteristics of how a structure is damaged between stories. Analysis results show that the more forces are distributed onto high stories, the lower its concentration is and the more energy is absorbed. From the results, this study proposes the optimum story shear force distribution and its calculation formula that make the damages uniformly distributed onto whole stories. Consequently, the story damage distribution from the optimum calculation formula was considerably more stable than existing seismic design codes.

The Structural Engineering Design and Construction of the Highest Occupiable Skybridge in the World: The Address Jumeirah Resort, Dubai, UAE

  • Hadow, Zaher;Dannan, Yamen
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.1
    • /
    • pp.61-68
    • /
    • 2022
  • The Address Jumeirah Resort is a mixed-use 77-story tower reaching a height of 301 meters with a slenderness ratio of 13.5:1. The development is situated in the Jumeirah Beach District and accommodates 217 key five-star hotel suites, 478 residential apartments, 444 serviced-branded apartments, retail shops, ballrooms and entertainment facilities around the premises. The building has over 242,000 m2 of usable area. The project is an award-winning development that broke multiple Guinness records. The focus of the paper is to present the challenges faced in the structural design and construction of the super tall tower and the highest occupiable skybridge in the world.

Experimental Study of Moisture-Wicking Fabric as Cooling Pad for Novel Rotary Direct Evaporative Cooler

  • Sang-Hwan Park;Jae-Weon Jeong
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.4
    • /
    • pp.335-341
    • /
    • 2023
  • This study proposes a novel rotary direct evaporative cooler and investigates the potential of a moisture-wicking fabric as a cooling pad for the proposed evaporative cooler. The rotary direct evaporative cooler rotates the cooling pad to reduce the water and energy consumption of the pump compared to those of existing direct evaporative coolers. A moisture-wicking fabric is considered as the material of the cooling pad, because of its high moisture-wicking property, enhancing water evaporation. Experiments are performed under various inlet air conditions while measuring the air temperature, relative humidity, air velocity, and differential pressure. The evaporative cooling efficiency and impacts of the inlet air temperature and air velocity on the cooling performance are also evaluated. The results demonstrate the potential of the moisture-wicking fabric as cooling pad of direct evaporative cooler.

Experimental Test on the Effect of Onsite Welding of Steel Plates for a Joint Between Concrete Columns and a Steel Belt Truss

  • Shim, Hak Bo;Yun, Da Yo;Park, Hyo Seon
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.155-166
    • /
    • 2020
  • To connect exterior reinforced concrete (RC) columns with the steel belt truss, the gusset plates are welded to the steel plates embedded in the RC column. Then, the concrete around an embedded plate is very likely to be damaged by the heat input from a long-time (6 to 48 hours) welding of the embedded and gusset plates at a joint between RC columns and steel belt truss. However, very few studies have assessed the concrete damage caused by the welding heat between embedded and gusset plates, and no clear onsite solution has been found. In this paper, experimental tests have been carried out on 4 full-scale specimen to analyze the effect of long-time (about 6 hours) onsite welding (1-side welding and 3-side welding) between a gusset plate and an embedded plate in high strength concrete with compressive strength of 55 MPa and 80 MPa on RC columns. The effect of the long-time welding heat of embedded and gusset plates, which are used in real high-rise building construction sites, on concrete is analyzed in terms of the following three items: 1) temperature distribution, 2) pattern and characteristics of cracks, and 3) effect of the cracks on the compressive strength of RC column. Based on the experimental results, even though the heat input up to about 150? from the long-time onsite welding on the high-strength concrete column for the joint could result in concrete cracks in a radial form, it is found that the welding cracks have no effect on the axial stiffness and strength of the concrete column.

Analysis of the Wireless Communication Environment in the Narrowed Residential Space for the Fire fighting Operation (소방작전을 위한 협소거주 공간의 무선 통신 환경 분석)

  • Park, Hyun-Ju;Hong, Sang-Beom;Choi, Hyuk-Jo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.3
    • /
    • pp.242-248
    • /
    • 2017
  • Recently, Population has been concentrated in cities due to rapid economic growth. As a result, urban buildings are becoming more dense, high-rise, and diversified. The shape of these urban buildings increases the risk of fire, accidents and crime. The narrow living space has the characteristic of the unchanged floor. In case of a fire, the living space of the narrow residence is large in the damage because the smoke diffusion rate is fast. The radio wave transmittance and transmission distance of wireless communication used in fire fighting operations vary depending on the type of building materials and buildings. Therefore, this paper analyzes the building materials and structural characteristics of the narrow residential space for efficient fire fighting operations. We have developed a communication environment solution for a narrow residential space for the optimal fire fighting operation through the measurement of the radio wave transmittance and the transmission distance of the wireless communication.