• 제목/요약/키워드: Urban heat mitigation

검색결과 51건 처리시간 0.028초

환경생태계획의 도시기후 변화 대응 가능성 연구 -남양주 월산리 마스터플랜을 중심으로 (A Study on the Urban climate Mitigation Effects with Ecological Landscape Planning with reference to Namyang-Ju Walsanli Master-plan)

  • 문수영;김현수;이광복
    • KIEAE Journal
    • /
    • 제10권6호
    • /
    • pp.11-19
    • /
    • 2010
  • To meet with the nation's policy of Green Growth, local governments are rushing to propose an ecological urban development plan. And although various studies stress on the need of ecological planning to harmonize development with preservation, we have come to a point in which a quantitative evaluation of how much ecological planning contributes to the environmental load is needed. Through the increasing tendency of making plans based on the development of IT technology, capability of gathering environmental data and scientific instrument, studies on ecological planning's effect towards environmental load has recently begun. This study aims to perform a quantitative evaluation on how ecological planning mitigate urban heat island in the region of Namyang-ju Wallsanli. Three theories were used to mitigate urban heat island ; White network, Green network and Blue network. As a result, the atmosphere temperature was reduced the whole site $1.1^{\circ}C$ and partly $7^{\circ}C$ and the mean radiant temperature was reduced the whole site $1.1^{\circ}C$ and partly $8.7^{\circ}C$ on the modified ecological landscape plan in summer. The PMV index is 0~1 in ecologically modified landscape plan otherwise almost 3 in landscape plan. This study has its limits on the fact that results may differ from the actual plan as the study was performed based on the land use plan and building plan. However, what is important is that it shows a quantitative result of the effect that ecological planning has on surrounding environment and reducing environmental load.

서울특별시 25개 자치구의 열환경과 미세먼지 간 Granger 인과관계 (Granger Causality between Thermal Environment and PM10 of Seoul's 25 Districts)

  • 연지민;김형규
    • 한국환경과학회지
    • /
    • 제31권1호
    • /
    • pp.9-21
    • /
    • 2022
  • Today's cities require deeper understanding of the thermal environment and PM10 as their management becomes more critical. Based on these circumstances, this study investigated the Granger causality between the thermal environment and PM10 of the 25 districts of Seoul, the most populous and urbanized city in Korea. The results of the Granger causality test on the thermal environment and PM10 were classified into 12 types. Except for type 12, the temperature and urban island heat intensity of the other 11 types operated as a Granger-cause to each other in both directions. Temperature operates as a Granger-cause of urban island heat intensity in type 12. The PM10 level and urban pollution island intensity operated as a Granger-cause to each other in all districts. For types 1 and 2, thermal environment operated as a Granger-cause to PM10 in one direction, and type 3-type 12 confirmed that thermal environment and PM10 operated as a Granger-cause in both directions. Findings reveal the intricate causalities between thermal environment and PM10 at the district level and suggest mitigation strategies that are more location based.

Assessing the resilience of urban water management to climate change

  • James A. Griffiths
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.32-32
    • /
    • 2023
  • Incidences of urban flood and extreme heat waves (due to the urban heat island effect) are expected to increase in New Zealand under future climate change (IPCC 2022; MfE 2020). Increasingly, the mitigation of such events will depend on the resilience of a range Nature-Based Solutions (NBS) used in Sustainable Urban Drainage Schemes (SUDS), or Water Sensitive Urban Design (WSUD) (Jamei and Tapper 2019; Johnson et al 2021). Understanding the impact of changing precipitation and temperature regimes due climate change is therefore critical to the long-term resilience of such urban infrastructure and design. Cuthbert et al (2022) have assessed the trade-offs between the water retention and cooling benefits of different urban greening methods (such as WSUD) relative to global location and climate. Using the Budyko water-energy balance framework (Budyko 1974), they demonstrated that the potential for water infiltration and storage (thus flood mitigation) was greater where potential evaporation is high relative to precipitation. Similarly, they found that the potential for mitigation of drought conditions was greater in cooler environments. Subsequently, Jaramillo et al. (2022) have illustrated the locations worldwide that will deviate from their current Budyko curve characteristic under climate change scenarios, as the relationship between actual evapotranspiration (AET) and potential evapotranspiration (PET) changes relative to precipitation. Using the above approach we assess the impact of future climate change on the urban water-energy balance in three contrasting New Zealand cities (Auckland, Wellington, Christchurch and Invercargill). The variation in Budyko curve characteristics is then used to describe expected changes in water storage and cooling potential in each urban area as a result of climate change. The implications of the results are then considered with respect to existing WSUD guidelines according to both the current and future climate in each location. It was concluded that calculation of Budyko curve deviation due to climate change could be calculated for any location and land-use type combination in New Zealand and could therefore be used to advance the general understanding of climate change impacts. Moreover, the approach could be used to better define the concept of urban infrastructure resilience and contribute to a better understanding of Budyko curve dynamics under climate change (questions raised by Berghuijs et al 2020)). Whilst this knowledge will assist in implementation of national climate change adaptation (MfE, 2022; UNEP, 2022) and improve climate resilience in urban areas in New Zealand, the approach could be repeated for any global location for which present and future mean precipitation and temperature conditions are known.

  • PDF

도시열섬완화를 위한 토지 이용 유형별 합리적 녹지율 분석 (An Analysis of Rational Green Area Ratio by Land Use Types for Mitigating Heat-Island Effects)

  • 송봉근;박경훈
    • 한국지리정보학회지
    • /
    • 제18권2호
    • /
    • pp.59-74
    • /
    • 2015
  • 본 연구는 다양한 토지이용유형별로 도시열섬현상을 완화하기 위한 합리적 녹지율을 분석하고자 하였다. 토지이용유형은 단독주택과 공동주택, 공공시설, 상업지역, 공업지역의 5가지 유형을 고려하였고, 녹지지역은 토지피복도에서 수목 속성을 추출하여 활용하였다. 열섬효과는 주간 및 야간에 촬영된 다중시기의 ASTER TIR 영상의 표면온도를 이용하였다. 주간시간은 야간시간보다 녹지의 표면온도 저감 효과가 큰 것으로 나타났다. 토지이용유형별로는 주간시간에 단독주택에서 녹지율에 따른 표면온도 저감효과가 가장 뚜렷했지만, 야간시간에는 토지이용유형별로 차이가 크지 않았다. 공업지역은 녹지의 표면온도 저감 효과가 낮았다. 토지이용유형별 도시열섬완화를 위한 합리적 녹지율을 산출한 결과, 주간시간은 단독주택과 공동주택, 상업지역에서 녹지율이 40~50% 사이일 때, 표면온도가 가장 낮았고, 야간시간은 녹지율별로 표면온도 변화가 크지 않았다. 따라서 본 연구의 결과는 도시개발계획 단계에서 도시열섬완화를 위해 효과적인 녹지면적을 제시할 수 있을 것으로 판단된다.

열수지를 활용한 서울시 열환경 개선을 위한 공간 유형화 (Spatial Typification based on Heat Balance for Improving Thermal Environment in Seoul)

  • 권유진;안새결;이동근;윤은주;성선용;이기승
    • 국토계획
    • /
    • 제53권7호
    • /
    • pp.109-126
    • /
    • 2018
  • The purpose of this study is to identify the spatial types for thermal environment improvement considering heat flux and its spatial context through empirical orthodox formulas. First, k-means clustering was used to classify values of three kinds of heat flux - latent, sensible and storage heat. Next, from the k-means clustering, we defined a type of thermal environment (type LHL) where improvement is needed for more comfortable and pleasant thermal environment in the city, among the eight types. Lastly, we compared and analyzed the characteristics of each classified thermal environmental types based on land cover types. From the study, we found that the ratio of impervious surfaces, roads, and buildings of the type LHL is higher than those of the type HLH (relatively thermal comfort environment). In order to improve the thermal environment, the following contents are proposed to urban planners and designers depending on the results of the study. a) Increase the green zone rate by 10% to reduce sensible heat; b) Reduce the percentage of impermeable surfaces and roads by 10% ; c) Latent heat increases when water and green spaces are expanded. This study will help to establish a minimum criterion for a land cover rate for the improvement of the urban thermal environment and a standard index for the thermal environmental improvement can be derived.

Sustainability and Challenges of Climate Change Mitigation through Urban Reforestation - A Review

  • Ogunbode, Timothy O.;Asifat, Janet T.
    • Journal of Forest and Environmental Science
    • /
    • 제37권1호
    • /
    • pp.1-13
    • /
    • 2021
  • The realities of Climate change and its untold implications on the livelihood of man are no longer new worldwide. In attempts to subdue the negative implications of Climate change scenario globally, several measures have being suggested and being put in place. One of such measures is urban reforestation especially in the developing nations where forest resources have extremely and uncontrollably exploited. Most of cities in developing nations are almost devoid of regularly maintained trees for whatever purpose. Thus, the enormous roles which urban tree performs are lacked in most cities. In order to subdue excessive heat in cities arising from exposure of urban land areas urban reforestation exercise needs to be embarked upon. The investigation was carried out through desk studies and review of relevant publications to examine what it entails to have a sustainable reforestation programme in cities. The study revealed that several factors need to be taken into consideration if sustainable urban reforestation will be achieved, especially in developing countries. These factors include urban soil nutrients status investigation, appropriate tree type study, public perception about the tree types, relevant legal instrument to achieve successful reforestation exercise in cities among others were found to be salient to this exercise. Urban reforestation has enormous potentials to subdue Climate change consequences, including urban renewal if adequate provision is made for its sustainability, especially in developing countries. To ensure this is realized it is recommended that relevant ministry/agency could be put in charge for the maintaining, cutting and replanting of urban tree and all that are involved in urban tree sustainability.

Evaluation of Water Retentive Pavement as Mitigation Strategy for Urban Heat Island Using Computational Fluid Dynamics

  • Cortes, Aiza;Shimadera, Hikari;Matsuo, Tomohito;Kondo, Akira
    • Asian Journal of Atmospheric Environment
    • /
    • 제10권4호
    • /
    • pp.179-189
    • /
    • 2016
  • Here we evaluated the effect of using water retentive pavement or WRP made from fly ash as material for main street in a real city block. We coupled computational fluid dynamics and pavement transport (CFD-PT) model to examine energy balance in the building canopies and ground surface. Two cases of 24 h unsteady analysis were simulated: case 1 where asphalt was used as the pavement material of all ground surfaces and case 2 where WRP was used as main street material. We aim to (1) predict diurnal variation in air temperature, wind speed, ground surface temperature and water content; and (2) compare ground surface energy fluxes. Using the coupled CFD-PT model it was proven that WRP as pavement material for main street can cause a decrease in ground surface temperature. The most significant decrease occurred at 1200 JST when solar radiation was most intense, surface temperature decreased by $13.8^{\circ}C$. This surface temperature decrease also led to cooling of air temperature at 1.5 m above street surface. During this time, air temperature in case 2 decreased by $0.28^{\circ}C$. As the radiation weakens from 1600 JST to 2000 JST, evaporative cooling had also been minimal. Shadow effect, higher albedo and lower thermal conductivity of WRP also contributed to surface temperature decrease. The cooling of ground surface eventually led to air temperature decrease. The degree of air temperature decrease was proportional to the surface temperature decrease. In terms of energy balance, WRP caused a maximum increase in latent heat flux by up to $255W/m^2$ and a decrease in sensible heat flux by up to $465W/m^2$.

Application Examples of CFD at the Planning Stage of High-Rise Buildings

  • Hiroto, Kataoka;Yoshiyuki, Ono;Kota, Enoki;Yuichi, Tabata;Satoko, Kinashi
    • 국제초고층학회논문집
    • /
    • 제11권3호
    • /
    • pp.145-156
    • /
    • 2022
  • Application examples of computational fluid dynamics (CFD) in the planning stage of high-rise buildings are introduced. First, we introduce examples of applications in the environmental field. The pedestrian wind environment was one of the earliest practical examples of CFD. CFD was also employed to validate the heat island mitigation measures proposed as part of the new construction plan. Second, application examples of wind-force evaluations are introduced. Prediction examples are presented for the peak wind pressure around a complex-shaped building and the wind force evaluation for a base-isolated building. The results prove that the results of the proper execution of CFD are equivalent to those of the wind tunnel experiment. As examples of CFD applications of other issues related to high-rise building planning, we introduce snow accretion on outer walls and high-temperature exhaust from emergency generators. Finally, the future prospects for the use of CFD are discussed.

위성영상과 머신러닝 활용 도시열섬 지역 옥상녹화 효과 예측과 이산화탄소 흡수량 평가 (Predicting the Effects of Rooftop Greening and Evaluating CO2 Sequestration in Urban Heat Island Areas Using Satellite Imagery and Machine Learning)

  • 김민주;박정우;박주현;박지수;현창욱
    • 대한원격탐사학회지
    • /
    • 제39권5_1호
    • /
    • pp.481-493
    • /
    • 2023
  • 고밀도 도심지의 열섬현상이 도시 기온을 더 높이고 있으며 이로부터 대기오염 악화, 냉방 에너지 소비 증가 및 온실가스 배출 증대와 같은 부정적 영향들이 발생한다. 녹지의 추가 확보가 어려운 도시 환경에서 옥상녹화는 효율적인 온실가스 감축 전략이다. 본 연구에서는 열섬현상 현황 분석에서 더 나아가 고해상도 위성자료 및 공간정보를 활용하여 연구 지역 내 옥상녹화 가용면적 산정 후 옥상녹화가 가져오는 온도 분포 예측을 통한 열섬현상 완화도 및 이산화탄소 흡수량 평가를 수행하였다. 이를 위해 WorldView-2 위성자료를 활용하여 부산시 도시열섬 지역의 기존 토지피복을 분류하고 머신러닝 기법을 적용하여 옥상녹화 전 후 온도 분포 예측 모델을 개발하였다. 옥상녹화 면적 변화에 따른 열섬현상 완화도를 평가하기 위해 랜덤포레스트 기법을 통해 온도가 종속변수인 온도 분포 예측모델을 구축하였고, 이 과정에서 랜덤포레스트 모델의 훈련자료로 사용될 고해상도 지표 온도 도출을 위해 Google Earth Engine을 활용하여 Landsat-8과 Sentinel-2 위성자료를 융합하는 다중회귀모델을 적용하였다. 또한, 옥상녹화용 초본식생별 이산화탄소 흡수량을 기반으로 녹화 면적에 따른 이산화탄소 흡수량을 평가하였다. 연구 결과를 통해 개발된 위성자료 활용 도시 열섬현상 평가 및 랜덤포레스트 모델 기반 온도 분포 예측 기술은 도시열섬 취약 지역에 확대 적용이 가능할 것으로 기대된다.

시계열 Landsat 위성영상을 활용한 도시 열섬 현상 완화 방안에 관한 연구 - 청라 국제도시를 중심으로 - (A Study on Mitigation Plan of Urban Heat Island Phenomenon Using Landsat Time Series Imagery - Focusing on Cheongna International City -)

  • 백선욱;김동현;김형수;구본엽;정윤재
    • 한국지리정보학회지
    • /
    • 제25권3호
    • /
    • pp.1-16
    • /
    • 2022
  • 간척사업을 통해 개발된 지역은 농지 및 도심지 개발 등과 같은 용지 공급 측면에서 경제적 효용가치가 크지만, 내륙에 위치하는 대도시에 비하여 상대적으로 초지 면적이 적고 건물이 밀집되어 있다는 특성이 존재한다. 이로 인해 간척사업을 통해 개발된 지역에서는 기온이 주변 지역보다 높아지는 도시 열섬 현상이 발생하고 있으며, 특히 간척사업을 통해 개발된 청라 국제도시는 도시 열섬 현상이 심화 되고 있다. 본 연구에서는 간척사업 이후 농경지 기간(2001-2008년), 개발정비 기간(2009-2013년), 인공초지조성 기간(2014-2020년)으로 분류하여 청라 국제도시의 도시 열섬 현상을 평가 및 분석하였다. 이를 위해 토지 피복도와 시계열 Landsat 위성영상을 활용하여 청라 국제도시에서 시가화 지역과 초지/산림지역의 지표면 온도 차이를 산정하였다. 시가화 지역과 초지/산림지역의 지표면 온도 차이는 농경지 기간 동안 최대 +1.05℃로 산출되었고, 개발정비 기간 동안 최대 +3.60℃로 산출되었으며, 인공초지 조성 기간 동안 최대 +2.51℃로 산출되었다. 본 연구결과를 통해 간척사업이 진행된 청라 국제도시에서 시가화 지역 면적이 증가할 때 도시 열섬 현상이 증가되며, 인공초지 면적이 증가할 때 도시 열섬 현상이 저감됨을 확인하였다. 본 논문의 결과는 도시계획에 있어 도시 열섬 현상 문제를 파악하고 저감 계획 수립을 위한 기초연구 자료로 활용될 수 있다.