• Title/Summary/Keyword: Urban greening

Search Result 98, Processing Time 0.02 seconds

An Analysis of Environmental and Economic Benefits of Green Roof in Jung-Gu, Daegu (대구시 중구의 옥상녹화를 통한 환경 및 경제적 편익 분석)

  • Kim, Soo-Bong;Chang, Jung-Keun
    • Journal of Environmental Science International
    • /
    • v.16 no.5
    • /
    • pp.603-610
    • /
    • 2007
  • Recent urban sprawl has destroyed various kinds of green space in tile city. It has affected duality of people's life in the city, as well as urban ecosystem. Recent study shows the possibilities of roofs as green spaces in urban central site where the land costs are generally high. This research focuses on Jung-Gu district in Daegu Metropolitan city as a study area and calculates possible area of green roof using 2002 Autocad program based on aerial photographs and land registration maps. And the purpose of this research is to analyze environmental and economic effects of green roof. The environmental effects are as follows. It is expected that $91,106m^2$ green spaces, 12.13 % of study site, will be added if green roof is performed in the study site. It is assumed that the expanded areas could reduce the highest temperature to $0.5-1.0^{\circ}C$ during the summer in terms of environmental effect. And the following shows the economic effects. If green roof and greening urban central site are created as a same size of $91,106m^2$, it will be expected that the costs of green roof will be much more in-expensive than about 98 billions won. It will be also found that the expense of cooling energy can be saved out about 8 millions won per day in summer, if grass planting is accomplished on the possible areas of green roof in the study site. Therefore, it is desirable to take legal supports such as enacting regulations to activate green roof for more environmental and economic effects. For instance, green roof for public institutions, school and model area selection are desirable method to publicize the effect of greening program for citizen's participation.

Performance Assessment of Three Turfgrass Species, in Three Different Soil Types, and their Responses to Water Deficit in Reinforced Cells, Growing in the Urban Environment

  • Ow, L.F;Ghosh, S.;Chin, S.W.
    • Weed & Turfgrass Science
    • /
    • v.4 no.4
    • /
    • pp.338-347
    • /
    • 2015
  • Reinforcement cells are used to aid grass growth and taken together, this serves to extend greenery beyond the conventional spaces of lawns, tree pits, gardens, and parks, and is advantageous to urban cities since space for greening is often limited. Drought has variable effects on plant life and the resilience of turf to drought resistance also varies with species. Changes in photosynthetic ability were more pronounced for media rather than grass species. The media of sand without organic matter was found to be least suited for drought resistance. Normalized difference vegetation index (NDVI) and digital image analysis (DIA) data were generally in favour of Zoysia species as oppose to A. compressus. In A. compressus, selective traits such as, a more extensive root system and lower specific leaf area (SLA) were not an underlying factor that assisted this grass with enhanced drought resistance. Generally, WUE was found to be strongly related to plant characterises such as overall biomass, photosynthetic features as well as the lushness indexes, and specific leaf area. This study found a strong relationship between WUE and a suite of plant characteristics. These traits should serve as useful selection criteria for species with the ability to resist water stress.

A Study on the Evaluation of Greening Level of Domestic Public Libraries (국내 공공도서관의 녹색화 수준 평가 연구)

  • Noh, Younghee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.28 no.2
    • /
    • pp.5-34
    • /
    • 2017
  • This study measured greening level on the 978 public libraries nationwide, making and distributing questionnaires based on green library evaluation indicators developed to measure the greening level of public libraries. As a result of analyzing the averages by evaluation area, among the green library evaluation areas, the whole average of the library resources was the highest by 1.93, and followed by land use and traffic 1.81, indoor environment 1.30, management of water circulation 1.20, etc. The greening evaluation area which shows the best strength in the surveyed public libraries, was the area of the library resource, and it turned out that it use spaces effectively like effective use of the entire area, effectiveness of conservation of books, use and management of eco-friendly products etc., or use the equipments in eco-friendly way which are purchased or used frequently in the libraries, and, as for the land use and traffic area, most of the libraries had bicycle racks, and chose the location of the libraries, considering accessibility to public transportation and a distance between central urban area and libraries. Also, it turns out that, in the area of materials and resources, most of the libraries were equipped with hand dryers and rolling towels and maintained the eco-friendly view.

Roof Greening applied a Sallow Green Roof Module System Out of Management - Focused on the Effects on the Growth of Plants by Difference of Soil Mixture Ratio - (식생모듈박스를 이용한 저토심 무관리형 옥상녹화 - 토양 배합비가 식물생육에 미치는 영향을 중심으로 -)

  • Kang, Tai-Ho;Zhao, Hong-Xia;Li, Hong;Kang, Sung-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.3
    • /
    • pp.91-98
    • /
    • 2012
  • The objective of this study was to analyze the effects on the growth of Sedum species by different soil in shallow green roof module system, and to find the best soil mixture. The experiment used a module system, 7cm soil depth, five types of soil mixture ratio, and it was carried out on 7th Hoar rooftop in December of 2010. The growth status of the plant showed the most superior of the P5C7P2V1, next P10C1P2V1 and P1P1V1, P1 and C1 showed very poor growth. This result showed that the soil mixture ratio (P5C7P2V1) in green roof module system with minimum management can contribute to the proliferation of rooftop greening in urban settings.

Verification on Cold-Tolerance of Some Fruit Trees as Species for Urban Greening Plants

  • Lee, Jin-Hee;Oh, Hee-Young;Kwon, O-Man
    • Journal of Environmental Science International
    • /
    • v.26 no.10
    • /
    • pp.1155-1166
    • /
    • 2017
  • This study selected commonly known species of fruit trees, and re-selected the species that endure the stress of extreme cold weather and physiologically restore themselves to the previous state until the following year. Then we could go ahead to propose the species that were appropriate as urban greening plants in weather condition of any part of the country. To do this, we conducted an experiments for six species of fruit trees based on the preference of the general public and recommendation of the experts; Morus alba (English name: mulberries), Diospyros kaki (English name: Persimmon), Prunus persia (English name: Peach), Elaeagnus umbellata var. coreana (English name: Korean Autumn Olive), Malus domestica 'Alps Otome' (English name: Alps Otome), and Prunus mume (English name: Blue Plum). The experiment verifies whether the trees survive without any stress from the cold weather under the national climate conditions (one in the suburbs of Seoul: Yongin city, one in the central Chungcheong region: Daejeon city, and in the southern Gyeongsang region: Jinju city in Korea). The experiment lasted for a year from August 2016 to August 2017. The levels of electrolytic efflux, chlorophyll content, plant height, fresh weight, and dry weight were measured four times (on August of 2016, January, February, and August of 2017) for each tree planted bare ground outdoors. Results showed that Diospyros kaki, Prunus persia, and Malus domestica 'Alps Otome' were proven durable and resistant to winters of all three areas (one in the suburbs of Seoul: Yongin city, one in the central Chungcheong region: Daejeon city, and in the southern Gyeongsang region: Jinju city in Korea). Especially, the increase of chlorophyll content and the reduction of electrolytic efflux were noticeable in Prunus persia than in the other two species, proving itself as the most cold-tolerant among the six species used in the experiment. In addition, interpreting from the physiological restoration data of one-year span before and after getting through winterer, Prunus persia was proven to be the most cold-tolerant species.

A Study on the Analysis of Temperature Reduction Effect by the Types of the Green Roof (옥상녹화의 녹화유형별 기온저감효과)

  • Lee, Chun-Woo;Kim, Soo-Bong;Moon, Hye-Shick
    • Journal of the Korean housing association
    • /
    • v.22 no.3
    • /
    • pp.25-33
    • /
    • 2011
  • Recently, concerns about conserving proper size of urban green spaces and accessibility are increasing, regarding it as a solution to diverse urban environmental problems including pollution, ecosystem deterioration, urban climate change. Artificial ground greening such as green roofs is regarded as the only alternative that can conserve green spaces which are impossible to be secured on the ground. However, green roofs are not popularized yet and levels are very low in provincial cities despite of related technology development and support systems of related agencies. Based on the background, this study tries to present a theoretical basis of methods for green roofs, conducting green roof simulations Finally, it aims to offer base data which help establish policy direction for activation of green roof technology. As a result of a simulation for verifying temperature reduction effect, it was possible to affirm effect of a plot that green roofs applied. Especially, it was revealed that a green roof method using ground covers such as mixed planting was the most effective way to reduce temperature. Based on precise analysis of the users, actual study for activation of green roofs should be developed in the future, by presenting a standard model for experiments and obtaining information about examples of green roofs on private houses.

Comparing Carbon Reduction Estimates for Tree Species from Different Quantitative Models

  • Hyun-Kil Jo;Hye-Mi Park
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.3
    • /
    • pp.119-127
    • /
    • 2023
  • In this study, quantitative models were applied to case parks to estimate the carbon reduction by trees, which was compared and analyzed at the tree and park levels. At the tree level, quantitative models of carbon storage and uptake differed by up to 7.9 times, even for the same species and size. At the park level, the carbon reduction from quantitative models varied by up to 3.7 times for the same park. In other words, carbon reduction by quantitative models exhibited considerable variation at the tree and park levels. These differences are likely due to the use of different growth environment coefficients and annual diameter at breast height growth rates and the overestimation of carbon reduction due to the substitution of the same genus and group model for each tree species. Extending the annual carbon uptake per unit area of the case park to the total park area of Chuncheon a carbon uptake ranging from a minimum of 370.4 t/yr and a maximum of 929.3 t/yr, and the difference can reach up to 558.9 t/yr. This is equivalent to the carbon emissions from the annual household electricity consumption of approximately 2,430 people. These results suggest that the indiscriminate application of quantitative models to estimate carbon reduction in urban trees can lead to significant errors and deviations in estimating carbon storage and uptake in urban greenspaces. The findings of this study can serve as a basis for estimating carbon reduction in urban greening research, projects, and policies.

A Study on the Analysis of Connectivity for Green Space Planning in Daejeon Metropolitan City (대전시 녹지계획을 위한 연결성 분석에 대한 연구)

  • Cheong, Yong-Moon;Kim, Sun-Tae;Kim, Myoung-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.6
    • /
    • pp.14-23
    • /
    • 2002
  • Daejeon is a large city in Korea and very high-speedly developing city. Recently urban area is expanding and large forest patch is fragmenting into small habitats because of urban sprawl. The fragmentation of large forest patch decreases the size of habitats and increases the loss of biodiversity in urban area. This study is to analysis the connectivity of green space of Daejeon metropolitan city, and suggest the optimum location of greening site and corridor in order to increase the connectivity of green space of Daejeon metropolitan city. The findings of this study are as follows; (1) The result of this study showed that ${\alpha}$ and ${\gamma}$ index are -0.24 and 0.20. A ${\alpha}$ index is very low and a ${\gamma}$ index is relatively low. (2) The dispersion was very high, for urban forest patches were isolated through fragmentation. Therefore, it needed ecological corridors in order to connect the patches. (3) A urban streams were very important in connectivity of urban green space. Urban riparian corridor must be preserved and restored. (4) A urban green space policy and planning must be prepared to increase the connectivity and assessment of alternatives must be accomplished from perspective of connectivity. The results of this study show the practical implications in perspective of green space planning and policy in Daejeon metropolitan city. The suggestions by findings of this study are to connect green space between large forest patch in urban fringe and island green space in inner city. Also, It is required that urban stream is restored to natural feature for use of corridor by wildlife.

Scenario-Based Analysis on the Effects of Green Areas on the Improvement of Urban Thermal Environment (녹지 조성 시나리오에 따른 도시 열환경 개선 효과 분석)

  • Min, Jin-Kyu;Eum, Jeong-Hee;Sung, Uk-Je;Son, Jeong-Min;Kim, Ju-Eun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.6
    • /
    • pp.1-14
    • /
    • 2022
  • To alleviate the urban heat island phenomenon, this study aims to quantitatively analyze the effects of neighborhood green spaces on the improvement of the thermal environment based on detailed scenarios of five types of green spaces, including parks, pocket parks, parking lot greening, roadside planting, and rooftop-wall greening. The ENVI-met 4.4.6v model, a microclimate simulation program, was used to analyze the effects of green spaces. As a result, it was found that the air temperature decreased as the planting density of the park increased, but the thermal comfort index PET, which is the degree of heat sensation felt by humans, was not directly proportional to temperature. The establishment of a pocket park reduced air temperature up to a radius of 56m, while the range of temperature reduction increased by about 12.5% when three additional pocket parks were established at 250m intervals. Unlike the air temperature, PET was only affected in the vicinity of the planted area, so there was no significant difference in the thermal comfort of the surrounding environment due to the construction of pocket parks. Changing the surface pavement from asphalt to lawn blocks and implementing rooftop or wall greening did not directly act as solar shading but positively affected air temperature reduction; PET showed no significant difference. Roadside planting showed a higher air temperature reduction effect as the planting interval was narrower, but PET was not directly proportional to tree density. In the case of shrub planting under trees, it did not significantly affect the air temperature reduction but positively affected the improvement of thermal comfort. This study can outline strategies for constructing neighborhood green spaces to solve the urban heat island phenomena and establish detailed strategies for efficient thermal environment improvements.

The Analysis of Instantaneous $CO_2$ Uptake and Evapotranspiration of Herbaceous Plants for Artificial Roof Greening (옥상녹화용 초본식물의 순간 $CO_2$ 흡수 및 증발산량 분석)

  • Ahn, Geun-Young;Han, Seung-Won;Lee, Eun-Heui
    • Korean Journal of Environment and Ecology
    • /
    • v.25 no.1
    • /
    • pp.91-101
    • /
    • 2011
  • The purpose of this study is to demonstrate the positive effects of artificial ground greening on the reduction of carbon dioxide ($CO_2$) which can help improve ecological functions in cities and mitigation of climate change, through quantifying $CO_2$ uptake and evapotranspiration by the process of photosynthesis of some plants. Experiment of $CO_2$ uptake and evapotranspiration was conducted by measurement of $CO_2$ exchange rate using the infrared gas analyzer, for 7 month, growing season from May to November 2009, 2 times a month. The result was as follows; The $CO_2$ uptake quantity per $cm^2$ of Chrysanthemum zawadskii was the highest rate at $21.47{\times}10^{-6}g/cm^2/s$ and Poa pratensis was $16.20g{\times}10^{-6}g/cm^2/s$. The stronger was light of intensity, the higher were $CO_2$ uptake rate of most plants. In quantity of evapotranspiration, Poa pratensis was the highest rate at $8.75{\times}10^{-5}g/cm^2/s$ and Aquilegia buergariana was $8.66{\times}10^{-5}g/cm^2/s$. From this study, it is confirmed that artificial ground greening has capacity of absorption $CO_2$ and effects on improving urban microclimate.