• Title/Summary/Keyword: Urban flooding reduction

Search Result 39, Processing Time 0.029 seconds

Determination of Optimal Operation Water Level of Rain Water Pump Station using Optimization Technique (최적화 기법을 이용한 빗물펌프장 최적 운영수위 결정)

  • Sim, Kyu-Bum;Yoo, Do-Guen;Kim, Eung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.337-342
    • /
    • 2018
  • A rain water pumping station is a structural countermeasure to inland flooding of domestic water generated in a urban watershed. In this study, the optimal operation water level of the pump with the minimum overflow was determined based on the opinions of the person in charge of the operation of the rain water pump station. A GA (Genetic Algorithm), which is an optimization technique, was used to estimate the optimal operation water level of the rain water pump station and was linked with SWMM (Ver.5.1) DLL, which is a rainfall-runoff model of an urban watershed. Considering the time required to maximize the efficiency of the pump, the optimal operating water level was estimated. As a result, the overall water level decreased at a lower operating water level than the existing water level. For most pumps, the lowest operating water level was selected for the operating range of each pump unit. The operation of the initial pump could reduce the amount of overflow, and there was no change in the overflow reduction, even after changing the operation condition of the pump. Internal water flooding reduction was calculated to be 1%~2%, and the overflow occurring in the downstream area was reduced. The operating point of the pump was judged to be an effective operation from a mechanical and practical point of view. A consideration of the operating conditions of the pump in future, will be helpful for improving the efficiency of the pump and to reducing inland flooding.

Model Predictive Control for Distributed Storage Facilities and Sewer Network Systems via PSO (분산형 저류시설-하수관망 네트워크 시스템의 입자군집최적화 기반 모델 예측 제어)

  • Baek, Hyunwook;Ryu, Jaena;Kim, Tea-Hyoung;Oh, Jeill
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.722-728
    • /
    • 2012
  • Urban sewer systems has a limitation of capacity of rainwater storage and problem of occurrence of untreated sewage, so adopting a storage facility for sewer flooding prevention and urban non-point pollution reduction has a big attention. The Korea Ministry of Environment has recently introduced a new concept of "multi-functional storage facility", which is crucial not only in preventive stormwater management but also in dealing with combined sewer overflow and sanitary sewer discharge, and also has been promoting its adoption. However, reserving a space for a single large-scale storage facility might be difficult especially in urban areas. Thus, decentralized construction of small- and midium-sized storage facilities and its operation have been introduced as an alternative way. In this paper, we propose a model predictive control scheme for an optimized operation of distributed storage facilities and sewer networks. To this aim, we first describe the mathematical model of each component of networks system which enables us to analyze its detailed dynamic behavior. Second, overflow locations and volumes will be predicted based on the developed network model with data on the external inflow occurred at specific locations of the network. MPC scheme based on the introduced particle swarm optimization technique then produces the optimized the gate setting for sewer network flow control, which minimizes sewer flooding and maximizes the potential storage capacity. Finally, the operational efficacy of the proposed control scheme is demonstrated by simulation study with virtual rainstorm event.

Experimental Study on Rainfall Runoff Reduction Effects by Permeable Polymer Block Pavement (투수성 폴리머 블록 포장에 의한 우수 유출 저감 효과에 관한 실험적 연구)

  • Sung, Chan-Yong;Kim, Young-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.157-166
    • /
    • 2012
  • Most of the roads are paved with impermeable materials such as asphalt concrete and cement concrete, and in the event of heavy rainfall, rainwater directly flows into river through a drainage hole on the pavement surface. This large quantity of rainwater directly spilled into the river frequently leads to the flooding of urban streams, damaging lowlands and the lower reaches of a river. In recent years there has been a great deal of ongoing research concerning water permeability and drainage in pavements. Accordingly, in this research, a porous polymer concrete was developed for permeable pavement by using unsaturated polyester resin as a binder, recycled aggregate as coarse aggregate, fly ash and blast furnace slag as filler, and its physical and mechanical properties were investigated. Also, 3 types of permeable polymer block by optimum mix design were developed and rainfall runoff reduction effects by permeability pavement using permeable polymer block were analyzed based on hydraulic experimental model. The infiltration volume, infiltration ratio, runoff initial time and runoff volume in permeability pavement with permeable polymer block of $300{\times}300{\times}80$ mm were evaluated for 50, 100 and 200mm/hr rainfall intensity.

Designing a Decentralized Stormwater Management Corridor for a Flood-Prone Watershed using Surface Runoff Analysis (지표유출수 분석을 통한 상습침수유역의 분산식 우수관리통로 설계)

  • Lee, Seul;Lee, Yumi
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.13-26
    • /
    • 2015
  • Many urban areas in Korea suffer from repeated flood damage during intensive rainfall due to an increase in impervious areas caused by rapid urbanization and deteriorating sewage systems. A centralized stormwater management system has caused severe flood damage in an area that has proven unable to accommodate recent climate change and a rise in precipitation. Most flooding prevention projects that have been recently implemented focus on increasing drainage system capacity by expanding the size of sewer pipes and adding pumping stations in downstream areas. However, such measures fail to provide sustainable solutions since they cannot solve fundamental problems to reduce surface runoff caused by urbanization across the watershed. A decentralized stormwater management system is needed that can minimize surface runoff and maximize localized retention capacity, while maintaining the existing drainage systems. This study proposes a stormwater management corridor for the flood-prone watershed in the city of Dongducheon. The corridor would connect the upstream, midstream, and downstream zones using various methods for reducing stormwater runoff. The research analyzed surface runoff patterns generated across the watershed using the Modified Rational Method considering the natural topography, land cover, and soil characteristics of each sub-watershed, as well as the urban fabric and land use. The expected effects of the design were verified by the retainable volume of stormwater runoff as based on the design application. The results suggest that an open space network serve as an urban green infrastructure, potentially expanding the functional and scenic values of the landscape. This method is more sustainable and effective than an engineering-based one, and can be applied to sustainable planning and management in flood-prone urban areas.

Nature-based Solutions for Climate-Adaptive Water Management: Conceptual Approaches and Challenges (기후변화대응 물관리를 위한 자연기반해법의 개념적 체계와 정책적 과제)

  • Park, Yujin;Oh, Jeill
    • Journal of Korean Society on Water Environment
    • /
    • v.38 no.4
    • /
    • pp.177-189
    • /
    • 2022
  • Nature-based Solutions (NbS) are defined as practical and technical approaches to restoring functioning ecosystems and biodiversity as a means to address socio-environmental challenges and provide human-nature co-benefits. This study reviews NbS-related literature to identify its key characteristics, techniques, and challenges for its application in climate-adaptive water management. The review finds that NbS has been commonly used as an umbrella term incorporating a wide range of existing ecosystem-based approaches such as low-impact development (LID), best management practices (BMP), forest landscape restoration (FLR), and blue-green infrastructure (BGI), rather than being a uniquely-situated practice. Its technical form and operation can vary significantly depending on the spatial scale (small versus large), objective (mitigation, adaptation, naturalization), and problem (water supply, quality, flooding). Commonly cited techniques include green spaces, permeable surfaces, wetlands, infiltration ponds, and riparian buffers in urban sites, while afforestation, floodplain restoration, and reed beds appear common in non- and less-urban settings. There is a greater lack of operational clarity for large-scale NbS than for small-scale NbS in urban areas. NbS can be a powerful tool that enables an integrated and coordinated action embracing not only water management, but also microclimate moderation, ecosystem conservation, and emissions reduction. This study points out the importance of developing decision-making guidelines that can inform practitioners of the selection, operation, and evaluation of NbS for specific sites. The absence of this framework is one of the obstacles to mainstreaming NbS for water management. More case studies are needed for empirical assessment of NbS.

A by-pass rainwater penetration sewer system for urban flooding mitigation (도시침수 저감을 위한 by-pass 빗물침투성 우수관거)

  • Lee, Bum-Sub;Ko, Keon-Ho;Kang, Ho-Yeong;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.799-807
    • /
    • 2016
  • The aim of this study is to determine and propose the by-pass rainwater sewer system in order to reduce the urban floodplain from the locality heavy rain every year during the dry season and the sinkholes in the city as well as the shortage of groundwaters due to extreme hot weather condition and urban heat island phenomenon. Heavy rain occurs more than the years of heavy rainfall probability, comparison between the place where uses the existing pipes and connect the sewer system with by-pass rain permeability and without expanding sewer pipe replacement at intersection of Gangnam station 3.07 ha at Gangnam-gu, Seoul Metropolitan area, it indicates that average of 27 million KRW (44%) maintenance cost savings and maintain existing sewer system without any other countermeasures. For the city flooded reduction, by-pass rainwater permeable rainwater pipe multiplying the probability the number of years during summer season and increase the water flow capacity during spring and fall when a small amount of rain that, it also contribute to the total amount of underground water secured through the by-pass penetration.

The Effect of Decentralized Rainwater Tank System on the Reduction of Peak Runoff - A Case Study at M Village - (빗물저류조의 분산배치에 따른 첨두유출 저감효과 분석 - M 마을 사례 -)

  • Han, Moo-Young;Kum, So-Yoon;Mun, Jung-Soo;Kwak, Dong-Geun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.1
    • /
    • pp.65-73
    • /
    • 2012
  • Recently climate change and increase of surface runoff caused the urban flooding. Traditional way of dealing with urban flooding has been to increase the sewer capacity or construction of pumping stations, however, it is practically almost impossible because of time, money and traffic problems. Multipurpose DRMS (Decentralized Rainwater Management System) is a new paradigm proposed and recommended by NEMA (National Emergency Management Agency) for both flood control and water conservation. Suwon City has already enacted the ordinance on sound water cycle management by DRMS. In this study, a flood prone area in Suwon is selected and analysis of DRMS has been made using XP-SWMM for different scenarios of RT installation with same total rainwater tank volume and location. Installing one rainwater tank of 3,000$m^3$ can reduce the peak flow rate by 15.5%. Installing six rainwater tanks of 500$m^3$ volume in the area can reduce the peak flow rate by 28%. Three tanks which is concentrated in the middle region can reduce peak rate more than evenly distributed tanks. The method and results found from this study can be used for the design and performance prediction of DRMS at a flood prone area by supplementing the existing sewer system without increase of the sewer capacity.

Study of flood prevention alternative priorities using MCDM (Multi-Criteria Decision Making) (MCDM을 이용한 홍수방어대안 우선순위 정립에 관한 연구)

  • Lim, Donghwa;Jeong, Soonchan;Lee, Eunkyung;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.3
    • /
    • pp.169-179
    • /
    • 2017
  • Recently, due to global warming and climate change in Korea, local heavy storm occurs frequently. In this study, the risky areas for flooding in urban areas are analyzed for flood inundation based on two-dimensional urban flood runoff model (XP-SWMM) focusing on coastal high flood-risk urban areas. In addition, the MCDM (Multi-Criteria Decision Making) technique is utilized in order to establish the flood defense structural measures. The alternative flood reduction method are compared and the optimum flood defense measures are selected. A simulation model was used with three structural flood prevention measures (drainage pipe construction, water detention, flood pumping station). In order to decrease the flooding area, flood assessment criteria are suggested (flooded area, maximum inundation depth, damaged residential area, construction cost). Priorities of alternatives are determined by using compromise programming. As a result, the optimal flood defence alternative suggested for Janghang Zone 1 is flood pumping station and for Janghang Zone 2, 3 are drainage pipe construction.

Analysis of Non-point Pollution Source Reduction by Permeable Pavement (투수성 포장에 의한 비점오염원 저감 효과 분석)

  • Koo, Young Min;Kim, Young Do;Park, Jae Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.1
    • /
    • pp.49-62
    • /
    • 2014
  • As the Urban area grows and more land is developed both within the city and in surrounding areas, hydrologic functions of the natural water cycle are altered. Urbanization creates impervious areas that negatively impact stormwater runoff characteristics. these changes to the natural hydrologic cycle result in the increased flooding, decreased groundwater recharge, increased urban heat island effects. Finally, the land use and other activities result in accumulation and washoff of pollutants from surface, resulting in water quality degradation. Therefore, in this study, evaluating and quantitative analysis of the percolation effect through infiltration experiment of permeable pavement, which is one of the ways that can reduce the problem of the dry stream. Also the SWMM model is used to study the effect of the hydrologic cycle for permeable pavement block contribution.

Analysis of Runoff Reduction Effect of Flood Mitigation Policies based on Cost-Benefit Perspective (비용-편익을 고려한 홍수 대응 정책의 유출 저감 효과 분석)

  • Jee, Hee Won;Kim, Hyeonju;Seo, Seung Beom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.721-733
    • /
    • 2023
  • As the frequency of extreme rainfall events increase due to climate change, climate change adaptation measures have been proposed by the central and local governments. In order to reduce flood damage in urban areas, various flood response policies, such as low impact development techniques and enhancement of the capacity of rainwater drainage networks, have been proposed. When these policies are established, regional characteristics and policy-effectiveness from the cost-benefit perspective must be considered for the flood mitigation measures. In this study, capacity enhancement of rainwater pipe networks and low impact development techniques including green roof and permeable pavement techniques are selected. And the flood reduction effect of the target watershed, Gwanak campus of Seoul National University, was analyzed using SWMM model which is an urban runoff simulation model. In addition, along with the quantified urban flooding reduction outputs, construction and operation costs for various policy scenarios were calculated so that cost-benefit analyses were conducted to analyze the effectiveness of the applied policy scenarios. As a result of cost-benefit analysis, a policy that adopts both permeable pavement and rainwater pipe expansion was selected as the best cost-effective scenario for flood mitigation. The research methodology, proposed in this study, is expected to be utilized for decision-making in the planning stage for flood mitigation measures for each region.