• Title/Summary/Keyword: Urban change detection

Search Result 129, Processing Time 0.024 seconds

Application of Multiple Threshold Values for Accuracy Improvement of an Automated Binary Change Detection Model

  • Yu, Byeong-Hyeok;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.3
    • /
    • pp.271-285
    • /
    • 2009
  • Multi-temporal satellite imagery can be changed into a transform image that emphasizes the changed area only through the application of various change detection techniques. From the transform image, an automated change detection model calculates the optimal threshold value for classifying the changed and unchanged areas. However, the model can cause undesirable results when the histogram of the transform image is unbalanced. This is because the model uses a single threshold value in which the sign is either positive or negative and its value is constant (e.g. -1, 1), regardless of the imbalance between changed pixels. This paper proposes an advanced method that can improve accuracy by applying separate threshold values according to the increased or decreased range of the changed pixels. It applies multiple threshold values based on the cumulative producer's and user's accuracies in the automated binary change detection model, and the analyst can automatically extract more accurate optimal threshold values. Multi-temporal IKONOS satellite imagery for the Daejeon area was used to test the proposed method. A total of 16 transformation results were applied to the two study sites, and optimal threshold values were determined using accuracy assessment curves. The experiment showed that the accuracy of most transform images is improved by applying multiple threshold values. The proposed method is expected to be used in various study fields, such as detection of illegal urban building, detection of the damaged area in a disaster, etc.

Designation for Change Detection of Building Objects in Urban Area in High-Resolution Satellite Image (고정밀 위성영상에서 도심지역 건물변화 탐지를 위한 중첩방법)

  • 이승희;박성모;이준환;김준철
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.4
    • /
    • pp.319-328
    • /
    • 2003
  • The automatic analysis of high-resolution satellite image is important in cartography, surveillance, exploiting resources etc. However, the automatic analysis of high resolution satellite image in the urban area has lots of difficulty including a shadow, the difference of illumination with time, the complexity of image so that the present techniques are seemed to be impossible to resolve. This paper proposes a new way of change detection of building objects in urban area, in which the objects in digital vector map are designated and superimposed on the the high-resolution satellite image. The proposed way makes the buildings on the vector map parameterize, and searches them in the preprocessed high-resolution satellite image by using generalized Hough transform. The designated building objects are overlaid on the satellite image and the result can help to search the changes in building objects rapidly.

Change Detection of a Small Town Area from Multi-Temporal Aerial Photos using Image Differencing and Image Ratio Techniques (다시기 항공사진으로부터 영상대차법과 영상대비법을 이용한 소도읍 지역의 변화 검출)

  • Lee, Jin-Duk;Yeon, Sang-Ho;Lee, Dong-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.116-124
    • /
    • 2008
  • This study presents the application of multi-temporal and multi-scale panchromatic aerial photos for change detection in a small urban area. For aerial photos of the scale of 1:20,000 taken in 1987 and 1996 and the scale of 1:37,500 taken in 2000. Pre-processing that make the same conditions to all of the aerial photos was carried out through geometric correction, registration, contrasting, resamplimg, and mosaicking and then change detection were carried out respectively by image differencing and image ratio techniques. As a result, the change of urban features and landcover were able to be detected from panchromatic aerial photos that is single-band images and then the detected change results were compared between both techniques.

  • PDF

Damage Detection Technique based on Texture Analysis

  • Jung, Myung-Hee
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.698-701
    • /
    • 2006
  • Remotely sensed data have been utilized efficiently for damage detection immediately after the natural disaster since they provide valuable information on land cover change due to spatial synchronization and multitemporal observation over large areas. Damage information obtained at an early stage is important for rapid emergency response and recovery works. Many useful techniques to analyze the characteristics of the pre- and post-event satellite images in large-scale damage detection have been successfully investigated for emergency management. Since high-resolution satellite images provide a wealth of information on damage occurred in urban areas, they are successfully utilized for damage detection in urban areas. In this research, a method to perform automated damage detection is proposed based on the differences of the textural characteristics in pre- and post- high resolution satellite images.

  • PDF

Digital Change Detection by Post-classification Comparison of Multitemporal Remotely-Sensed Data

  • Cho, Seong-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.4
    • /
    • pp.367-373
    • /
    • 2000
  • Natural and artificial land features are very dynamic, changing somewhat repidly in our lifetime. It is important that such changes are inventoried accurately so that the physical and human processes at work can be more fully understood. Change detection is a technique used to determine the change between two or more time periods of a particular object of study. Change detection is an important process in monitoring and managing natural resources and urban development because it provides quantitative analysis of the spatial distribution in the population of interest. The purpose of this research is to detect environmental changes surrounding an area of Mountain Moscow, Idaho using Landsat Thematic Maper (TM) images of (July 8, 1990 and July 20, 1991). For accurate classification, the Image enhancement process was performed for improving the image quality of each image. A SPOT image (Aug. 14, 1992) was used for image merging in this research. Supervised classification was performed using the maximum likelihood method. Accuracy assessments were done for each classification. Two images were compared on a pixel-by-pixel basis using the post-classification comparison method that is used for detecting the changes of the study area in this research. The 'from-to' change class information can be detected by post classification comparison using this method and we could find which class change to another.

Modeling the Spatial Dynamics of Urban Green Spaces in Daegu with a CA-Markov Model (CA-Markov 모형을 이용한 대구시 녹지의 공간적 변화 모델링)

  • Seo, Hyun-Jin;Jun, Byong-Woon
    • Journal of the Korean Geographical Society
    • /
    • v.52 no.1
    • /
    • pp.123-141
    • /
    • 2017
  • This study predicted urban green spaces for 2020 based on two scenarios keeping or freeing the green-belt in the Daegu metropolitan city using a hybrid Cellular Automata(CA)-Markov model and analyzed the spatial dynamics of urban green spaces between 2009 and 2020 using a land cover change detection technique and spatial metrics. Markov chain analysis was employed to derive the transition probability for projecting land cover change into the future for 2020 based on two land cover maps in 1998 and 2009 provided by the Ministry of Environment. Multi-criteria evaluation(MCE) was adopted to develop seven suitability maps which were empirically derived in relation to the six restriction factors underlying the land cover change between the years 1998 and 2009. A hybrid CA-Markov model was then implemented to predict the land cover change over an 11 year period to 2020 based on two scenarios keeping or freeing the green-belt. The projected land cover for 2009 was cross-validated with the actual land cover in 2009 using Kappa statistics. Results show that urban green spaces will be remarkably fragmented in the suburban areas such as Dalseong-gun, Seongseo, Ansim and Chilgok in the year 2020 if the Daegu metropolitan city keeps its urbanization at current pace and in case of keeping the green-belt. In case of freeing the green-belt, urban green spaces will be fragmented on the fringes of the green-belt. It is thus required to monitor urban green spaces systematically considering the spatial change patterns identified by this study for sustainably managing them in the Daegu metropolitan city in the near future.

  • PDF

Urban Change Detection for High-resolution Satellite Images Using U-Net Based on SPADE (SPADE 기반 U-Net을 이용한 고해상도 위성영상에서의 도시 변화탐지)

  • Song, Changwoo;Wahyu, Wiratama;Jung, Jihun;Hong, Seongjae;Kim, Daehee;Kang, Joohyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1579-1590
    • /
    • 2020
  • In this paper, spatially-adaptive denormalization (SPADE) based U-Net is proposed to detect changes by using high-resolution satellite images. The proposed network is to preserve spatial information using SPADE. Change detection methods using high-resolution satellite images can be used to resolve various urban problems such as city planning and forecasting. For using pixel-based change detection, which is a conventional method such as Iteratively Reweighted-Multivariate Alteration Detection (IR-MAD), unchanged areas will be detected as changing areas because changes in pixels are sensitive to the state of the environment such as seasonal changes between images. Therefore, in this paper, to precisely detect the changes of the objects that consist of the city in time-series satellite images, the semantic spatial objects that consist of the city are defined, extracted through deep learning based image segmentation, and then analyzed the changes between areas to carry out change detection. The semantic objects for analyzing changes were defined as six classes: building, road, farmland, vinyl house, forest area, and waterside area. Each network model learned with KOMPSAT-3A satellite images performs a change detection for the time-series KOMPSAT-3 satellite images. For objective assessments for change detection, we use F1-score, kappa. We found that the proposed method gives a better performance compared to U-Net and UNet++ by achieving an average F1-score of 0.77, kappa of 77.29.

Detection of Heat Change in Urban Center Using Landsat Imagery (Landsat 영상을 이용한 도심의 열변화 탐지)

  • Kang, Joon-Mook;Ka, Myung-Seok;Lee, Sung-Soon;Park, Joon-Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.197-206
    • /
    • 2010
  • Recently, developed countries have continuously been trying to recognize many issues about heat island in urban area and to make up countermeasures for them. This research is designed to extract change of land cover in the area under condition of land development with satellite images and to analyze its effect on the heat change in there. Heat change upon change of land cover in daejeon was analyzed with the four Landsat satellite images taken in April 1985, August 1994, May 2001, and May 2009. In order to measure the temperature on the surface in the city, the land surface temperature was produced with Landsat TM Band 6. Heat change is to detected with it. As a result, The urban area has been increased up to 23.59 percent. On the other hand, the forest area has been decreased up to 27.91%. Due to the urbanization, the temperature on the surface in urban center was higher than surrounding area. In that case, the temperature of urban center area was higher 2.4 to $5.7^{\circ}C$ compared with the forest area.

Correction of Lunar Irradiation Effect and Change Detection Using Suomi-NPP Data (VIIRS DNB 영상의 달빛 영향 보정 및 변화 탐지)

  • Lee, Boram;Lee, Yoon-Kyung;Kim, Donghan;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.265-278
    • /
    • 2019
  • Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) data help to enable rapid emergency responses through detection of the artificial and natural disasters occurring at night. The DNB data without correction of lunar irradiance effect distributed by Korea Ocean Science Center (KOSC) has advantage for rapid change detection because of direct receiving. In this study, radiance differences according to the phase of the moon was analyzed for urban and mountain areas in Korean Peninsula using the DNB data directly receiving to KOSC. Lunar irradiance correction algorithm was proposed for the change detection. Relative correction was performed by regression analysis between the selected pixels considering the land cover classification in the reference DNB image during the new moon and the input DNB image. As a result of daily difference image analysis, the brightness value change in urban area and mountain area was ${\pm}30$ radiance and below ${\pm}1$ radiance respectively. The object based change detection was performed after the extraction of the main object of interest based on the average image of time series data in order to reduce the matching and geometric error between DNB images. The changes in brightness occurring in mountainous areas were effectively detected after the calibration of lunar irradiance effect, and it showed that the developed technology could be used for real time change detection.

Vegetation Change Detection in the Sihwa Embankment using Multi-Temporal Satellite Data (다중시기 위성영상을 이용한 시화 방조제 내만 식생변화탐지)

  • Jeong, Jong-Chul;Suh, Young-Sang;Kim, Sang-Wook
    • Journal of Environmental Science International
    • /
    • v.15 no.4
    • /
    • pp.373-378
    • /
    • 2006
  • The western coast of South Korea is famous for its large and broad tidal lands. Nevertheless, land reclamation, which has been conducted on a large scale, such as Sihwa embankment construction project has accelerated coastal environmental changes in the embankment inland. For monitoring of environmental change, vegetation change detecting of the embankment inland were carried out and field survey data compared with Landsat TM, ETM+, IKONOS, and EOC satellite remotely sensed data. In order to utilize multi-temporal remotely sensed images effectively, all data set with pixel size were analyzed by same geometric correction method. To detect the tidal land vegetation change, the spectral characteristics and spatial resolution of Landsat TM and ETM+ images were analyzed by SMA(spectral mixture analysis). We obtained the 78.96% classification accuracy and Kappa index 0.2376 using March 2000 Landsat data. The SMA(spectral mixture analysis) results were considered with comparing of vegetation seasonal change detection method.