• Title/Summary/Keyword: Urban cartography

Search Result 316, Processing Time 0.018 seconds

Comparison of Network-RTK Surveying Methods at Unified Control Stations in Incheon Area (인천지역 통합기준점에서 Network-RTK 측량기법의 비교)

  • Lee, Yong Chang
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.5
    • /
    • pp.469-479
    • /
    • 2014
  • N-RTK(Network based RTK) methods are able to improve the accuracy of GNSS positioning results through modelling of the distance-dependent error sources(i.e. primarily the ionospheric and tropospheric delays and orbit errors). In this study, the comparison of the TTFF(Time-To-Fix-First ambiguity), accuracy and discrepancies in horizontal/vertical components of N-RTK methods(VRS and FKP) with the static GNSS at 20 Unified Control Stations covering Incheon metropolitan city area during solar storms(Solar cycle 24 period) were performed. The results showed that the best method, compared with the statics GNSS survey, is the VRS, followed by the FKP, but vertical components of both VRS and FKP were approximately two times bigger than horizontal components. The reason for this is considered as the ionospheric scintillation because of irregularities in electron density, and the tropospheric scintillation because of fluctuations on the refractive index take the place. When the TTFF at each station for each technique used, VRS gave shorter initialization time than FKP. The possible reasons for this result might be the inherent differences in principles, errors in characteristics of different correction networks, interpolating errors of FKP parameters according to the non-linear variation of the dispersive and non-dispersive errors at rover when considering both domestic mobile communication infra and the standardized high-compact data format for N-RTK. Also, those test results revealed degradation of positing accuracy, long initialization time, and sudden re-initialization, but more failures to resolve ambiguity during space weather events caused by Sunspot activity and solar flares.

Extracting Building Boundary from Aerial LiDAR Points Data Using Extended χ Algorithm (항공 라이다 데이터로부터 확장 카이 알고리즘을 이용한 건물경계선 추출)

  • Cho, Hong-Beom;Lee, Kwang-Il;Choi, Hyun-Seok;Cho, Woo-Sug;Cho, Young-Won
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.2
    • /
    • pp.111-119
    • /
    • 2013
  • It is essential and fundamental to extract boundary information of target object via massive three-dimensional point data acquired from laser scanner. Especially extracting boundary information of manmade features such as buildings is quite important because building is one of the major components consisting complex contemporary urban area, and has artificially defined shape. In this research, extended ${\chi}$-algorithm using geometry information of point data was proposed to extract boundary information of building from three-dimensional point data consisting building. The proposed algorithm begins with composing Delaunay triangulation process for given points and removes edges satisfying specific conditions process. Additionally, to make whole boundary extraction process efficient, we used Sweep-hull algorithm for constructing Delaunay triangulation. To verify the performance of the proposed extended ${\chi}$-algorithm, we compared the proposed algorithm with Encasing Polygon Generating Algorithm and ${\alpha}$-Shape Algorithm, which had been researched in the area of feature extraction. Further, the extracted boundary information from the proposed algorithm was analysed against manually digitized building boundary in order to test accuracy of the result of extracting boundary. The experimental results showed that extended ${\chi}$-algorithm proposed in this research proved to improve the speed of extracting boundary information compared to the existing algorithm with a higher accuracy for detecting boundary information.

Availability Evaluation of FKP-RTK Positioning for Construction Survey Application (FKP-RTK 측위의 시공측량 적용성 실험)

  • Kim, In Seup
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_1
    • /
    • pp.463-469
    • /
    • 2013
  • In addition to the VRS-RTK service, FKP-RTK service launched recently in Korea however unlike VRS, it is not yet applied to various surveying tasks. VRS system is operated in two way communication over the mobile Internet. When user send rover position data to network RTK server and the server provides correction data to users continuously. It causes to increase communications load and makes delaying or failure in data transmission depends on server capacity and number of concurrent users. In contrast, since FKP system is one way communication system, user only receives correction data and area correction parameters for the selected Continuous Reference Station from the server. Thus, there is no limitation to the number of concurrent users in FKP system and it would be more efficient than VRS system in terms of economic. To this end, we performed FKP-RTK test for Unified Control Points and Urban Control Points where are located at 5 regions in Korea to evaluate the accuracy. As a result, almost of FKP positioning data are in error range of ${\pm}6.2cm$ in horizontal and it would be enough for construction survey such as for earth work in limited except precise structure survey.

Simulation Analysis of GPS Reception Environment of Unified Control Points Using GIS (GIS를 이용한 통합기준점의 GPS 수신환경 모의 분석)

  • Kim, Tae Woo;Yun, Hong Sik;Kim, Kwang Bae;Jung, Woon Chul
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.609-616
    • /
    • 2017
  • National Geographic Information Institute has established a plan that preoccupies UCPs (Unified Control Points) at 2~3km intervals in urban areas by considering the distance between existing UCPs by satellite images and aerial photographs in 2015. In this study, we discussed the method of selecting the locations of optimal UCPs by simulating GPS reception environment in candidate sites for UCPs using GIS. For this purpose, we selected new candidate sites for installing UCPs using satellite images and aerial photographs, and analyzed the GPS reception environment by calculating the visibility distance from buildings around UCPs using GIS skyline analysis. The number of and the arrangement of visible satellites that are capable of GPS satellite reception from the viewpoint of sky view were showed by GIS skyline analysis. Quality evaluation results of GPS observation data were compared with average PDOP calculated from hourly PDOP and TEQC in two points of Sungkyunkwan University during 8 hours. As a result of GPS reception environment using GIS, if the PDOP increases, the data acquisition rate is lowed, and the multipath error and the cycle slip are increased. Thus, this study verified that the quality of GPS observation data can be secured by constructing three-dimensional spatial information and simulating PDOP when preoccupying multiple UCPs using GIS.

Generation of 3-D City Model using Aerial Imagery (항공사진을 이용한 3차원 도시 모형 생성)

  • Yeu Bock Mo;Jin Kyeong Hyeok;Yoo Hwan Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.3
    • /
    • pp.233-238
    • /
    • 2005
  • 3-D virtual city model is becoming increasingly important for a number of GIS applications. For reconstruction of 3D building in urban area aerial images, satellite images, LIDAR data have been used mainly and most of researches related to 3-D reconstruction focus on development of method for extraction of building height and reconstruction of building. In case of automatically extracting and reconstructing of building height using only aerial images or satellite images, there are a lot of problems, such as mismatching that result from a geometric distortion of optical images. Therefore, researches of integrating optical images and existing digital map (1/1,000) has been in progress. In this paper, we focused on extracting of building height by means of interest points and vertical line locus method for reducing matching points. Also we used digital plotter in order to validate for the results in this study using aerial images (1/5,000) and existing digital map (1/1,000).

Evaluation on Tie Point Extraction Methods of WorldView-2 Stereo Images to Analyze Height Information of Buildings (건물의 높이 정보 분석을 위한 WorldView-2 스테레오 영상의 정합점 추출방법 평가)

  • Yeji, Kim;Yongil, Kim
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.407-414
    • /
    • 2015
  • Interest points are generally located at the pixels where height changes occur. So, interest points can be the significant pixels for DSM generation, and these have the important role to generate accurate and reliable matching results. Manual operation is widely used to extract the interest points and to match stereo satellite images using these for generating height information, but it causes economic and time consuming problems. Thus, a tie point extraction method using Harris-affine technique and SIFT(Scale Invariant Feature Transform) descriptors was suggested to analyze height information of buildings in this study. Interest points on buildings were extracted by Harris-affine technique, and tie points were collected efficiently by SIFT descriptors, which is invariant for scale. Searching window for each interest points was used, and direction of tie points pairs were considered for more efficient tie point extraction method. Tie point pairs estimated by proposed method was used to analyze height information of buildings. The result had RMSE values less than 2m comparing to the height information estimated by manual method.

Mapping Inundation Areas Using SWMM (SWMM을 이용한 침수예상지도 작성 연구)

  • Don Gon, Choi;Jinmu, Choi
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.335-342
    • /
    • 2015
  • In this study, data linking module called GeoSWMM was developed using a typical secondary flooding model SWMM in order to improve the accuracy of the input data of SWMM and to map hourly inundation estimation areas that were not represented in the conventional inundation map. GeoSWMM is a data linking module of GIS and SWMM, which can generate a SWMM project file directly from sewer network GIS data. Utilizing the GeoSWMM the project file of SWMM model was constructed in the study area, Seocho 2-dong, Seoul. The actual flooding has occurred September 21, 2010 and the actual rainfall data were used for flood simulation. As a result, the outflow started from 2 PM due to the lack of water flow capacity of the sewage system. Based on the results, hourly inundation estimation maps were produced and compared with flood train map in 2010. The comparison showed about 66% matching in the overlap of inundation areas. By utilizing GeoSWMM that was developed in this study, it is easy to build the sewer network data for SWMM. In addition, the creation of hourly inundation estimation map using SWMM will be much help to flood disaster prevention plan.

Preliminary Analysis of Network-RTK for Navigation (차량항법용 네트워크 RTK 기반 연구)

  • Min-Ho, Kim;Tae-Suk, Bae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.343-351
    • /
    • 2015
  • It is well-known that even the DGNSS (Differential Global Navigation Satellite System) technique in navigation for ground vehicles can only provide several meters of accuracy, such that it is suitable for simple guidance. On the other hand, centimeter to millimeter level accuracy can be obtained by using carrier phase observables in the field of precision geodesy/surveying. In this study, a preliminary study was conducted to apply NRTK (Network-RTK) by NGII (National Geographic Information Institute) to ground vehicle navigation. Onboard GNSS receivers were used for NRTK throughout the country, and the applicability of NRTK on navigation was analyzed based on NRTK surveying results. The analysis shows that the overall ambiguity fixing rate of NRTK is high and is therefore possible to apply it for navigation. In urban areas, however, the fixing rate decreases sharply, therefore, it needs to employ a method to minimize the effect of the float solutions, which can reach up to 10 meters. It is still feasible to obtain a centimeter level of accuracy in some area using NRTK under certain conditions. But, the ambiguity fixing rate of FKP falls down to 55% for high speed vehicles, and so the surveying accuracy should be determined by considering various factors of surveying environments. In addition, it is difficult to fix ambiguities using single-frequency GPS receivers. Finally, several suspicious NRTK(FKP) connection problems occurred during atmospheric disturbances (phase two or up), which should be investigated further in upcoming research.

A Study on the Unification Scheme of Surveying Policy and Geographic Information of South and North Korea (남북한 측량제도 및 지리정보 통합방안 연구)

  • Choi Yun-Soo;Park Hong-Gi;Lee Ho-Nam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.2
    • /
    • pp.193-200
    • /
    • 2006
  • Geographic information and surveying products are a momentous national infrastructure since it is an essential basis for land management and environmental preservation. Hence, it is necessary to set up a systematic plan and countermeasure for the upcoming unification of Korea. Otherwise there would be tremendous confusion and it will cause enormous expenses to establish the national surveying and geographical information standard. In order to show the vision of policies preparing for the unification of North and South Korea, we analyzed the case of Germany and the current status of surveying and Geographical Information in South and North Korea by taking the internet investigation, having a seminar, interviewing experts, and visiting related organizations. First of all, we should predict the change of surveying circumstances after the reunification and establish a plan that unifies laws, systems, and surveying standards of North and South Korea. We need to modify the datum point and unify the surveying product of South and North Korea in World Geodetic System. To accomplish these goals, we must make the map of Korean peninsula and neighboring nations, especially urban area of North Korea. It is considered that National Geographic Information Institute should take a major role in the unification of Korea. With these active preparations and plans, we will achieve the goals of establishing the reinforced surveying policy and minimizing the reunification expenses.

Construction of 3D Digital Maps Using 3D Symbols (3차원 심볼을 활용한 3차원 수치지도 제작에 관한 연구)

  • Park, Seung-Yong;Lee, Jae-Bin;Yu, Ki-Yun;Kim, Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.5
    • /
    • pp.417-424
    • /
    • 2006
  • Despite of many researches related to create 3D digital maps, it is still time-consuming and costly because a large part of 3D digital mapping is conducted manually. To circumvent this limitation, we proposed methodologies to create 3D digital maps with 3D symbols automatically. For this purpose, firstly, the 3D symbol library to represent 3D objects as 3D symbols was constructed. In this library, we stored the attribute and geometry information of 3D objects which define types and shapes of symbols respectively. These information were used to match 3D objects with 3D symbols and extracted from 2D digital maps and LiDAR(Light Detection and Ranging) data. Then, to locate 3D symbols into a base map automatically, we used predefined parameters such as the size, the height, the rotation angle and the center of gravity of 3D objects which are extracted from LiDAR data. Finally, the 3D digital map in urban area was constructed and the results were tested. Through this research, we can identify that the developed algorithms can be used as effective techniques for 3D digital mapping.