Jang, Yeong Jae;Jo, Hyeon Jeong;Oh, Jae Hong;Lee, Chang No
한국측량학회지
/
제39권2호
/
pp.93-101
/
2021
Recently, with the urban redevelopment and the spread of the planned cities, there is increasing interest in the wind environment, which is related not only to design of buildings and landscaping but also to the comfortability of pedestrians. Numerical analysis for wind environment prediction is underway in many fields, such as dense areas of high-rise building or composition of the apartment complexes, a precisive 3D building model is essentially required in this process. Many studies conducted for wind environment analysis have typically used the method of creating a 3D model by utilizing the building layer included in the GIS (Geographic Information System) data. These data can easily and quickly observe the flow of atmosphere in a wide urban environment, but cannot be suitable for observing precisive flow of atmosphere, and in particular, the effect of a complicated structure of a single building on the flow of atmosphere cannot be calculated. Recently, drone photogrammetry has shown the advantage of being able to automatically perform building modeling based on a large number of images. In this study, we applied photogrammetry technology using a drone to evaluate the flow of atmosphere around two buildings located close to each other. Two 3D models were made into an automatic modeling technique and manual modeling technique. Auto-modeling technique is using an automatically generates a point cloud through photogrammetry and generating models through interpolation, and manual-modeling technique is a manually operated technique that individually generates 3D models based on point clouds. And then the flow of atmosphere for the two models was compared and analyzed. As a result, the wind environment of the two models showed a clear difference, and the model created by auto-modeling showed faster flow of atmosphere than the model created by manual modeling. Also in the case of the 3D mesh generated by auto-modeling showed the limitation of not proceeding an accurate analysis because the precise 3D shape was not reproduced in the closed area such as the porch of the building or the bridge between buildings.
식생은 인간에게 다양한 생태공간을 제공하고 수자원 및 기후환경 측면에서도 매우 중요하기 때문에 근적외선 센서 기반의 식생지수를 활용한 식생 모니터링 연구가 많이 수행되어 왔다. 따라서 근적외선 센서를 구비하지 못할 경우 식생 모니터링 연구가 현실적으로 어려운 문제가 있었다. 본 연구에서는 이러한 문제를 개선하고자 NDVI 식생지수를 기준자료로 하여 광학센서 기반의 식생지수 정확도를 평가하였다. 먼저 현장에서 조사한 식생조사 지점과 NDVI 식생지수와의 중첩을 통해 Kappa 계수를 계산하였으며, 그 결과 Kappa 계수가 0.930으로 가장 높게 나타난 0.6 이상의 임계값을 갖는 식생영역을 광학센서 기반의 식생지수 정확도 평가의 기준자료로 선정할 수 있었다. NDVI 식생지수를 기준자료로 선정하여 광학센서 기반의 식생지수와 비교한 결과, 0.04, 0.08, 0.30 이상의 임계값 구간에서 Kappa 계수가 각각 0.713, 0.713, 0.828로 가장 높게 분석되었다. 특히 RGBVI 식생지수의 경우 Kappa 계수가 0.828로 높게 나타났으며, 따라서 근적외선 센서를 활용하지 못하는 환경에서도 광학센서를 활용한 식생 모니터링 연구가 가능함을 알 수 있었다.
최근 우리나라는 크고 작은 화재가 지속해서 발생하고 있다. 화재는 우리나라의 도시 내에서 교통사고와 더불어 가장 많이 발생하는 재해 중 하나이며, 화재 발생 빈도는 토지이용의 형태와 시설물의 유형에 따라 밀접한 상관성을 갖고 있다. 따라서 본 연구에서는 진주시를 대상으로 10년간 화재데이터를 사용하여 토지용도별, 시설물 유형별 그리고 인문 사회적 요인을 고려하여 화재 발생의 유의성을 분석하였다. 먼저 진주시 화재 발생의 공간분포 패턴을 파악한 후, 다중 회귀분석을 통해 인문·사회 및 물리적 요인 간의 공간적 종속성 및 비정상성을 확인하였다. 이를 토대로 화재 발생 위치와 각 요인의 위치를 고려하여 공간가중치를 활용한 선형회귀모형, 공간시차모형 그리고 공간오차모형을 비교 분석하였으며 적합도가 높은 통계모형을 제시하였다. 그 결과 진주시 화재 발생의 공간분포 패턴을 확인하기 위해 LISA분석을 실시하였으며 중심상업지역, 공업지역, 주거지역 순으로 화재 발생 빈도가 높은 것으로 나타났고, 인구·사회 및 물리적 변수를 통합하여 다중회귀분석을 실시하였다. 이에 따라 최종 도출된 요인들을 중심으로 공간가중치를 적용하여 세 모형을 비교 분석하였으며 유의성 검정을 실시한 결과 공간오차모형이 가장 유의한 것으로 분석되었다. 화재 발생과 가장 높은 상관성이 있는 시설은 제2종 근린생활시설로 나타났으며 다음으로 단독주택, 제1종 근린생활시설, 가구 수, 판매시설의 순으로 분석되었다. 또한, 표준편차 타원체분석을 통하여 용도지역 중 주거지역, 공업지역, 중심상업지역을 중심으로 시설물별 분포특성을 분석한 결과 주거지역 및 공업지역에서는 네 개 시설물의 특성이 비슷하게 나타났으나 중심상업지역에서는 화재위험도가 가장 높은 제2종 근린생활시설이 중심부에 집중분포하였다. 이러한 연구 결과는 도시지역에서 발생하는 화재에 대해 시설물별 특성을 파악하여 화재안전관리를 하는데 유용한 자료로 활용될 것으로 예상된다.
최근 고해상도 영상을 지원하는 위성들이 다양화되면서 도심지에 대한 DSM (Digital Surface Model) 생성 및 업데이트가 가능해지고 있다. 그에 따라 고해상도 DSM을 이용해 건물 단위의 변화탐지가 가능해지면서 DSM을 활용한 건물 변화탐지 기법들이 다양하게 연구되고 있다. 기본적으로 DSM을 활용한 건물 변화탐지를 위해서는 스테레오 위성영상을 이용한 두 시기에 대한 DSM의 생성이 필요하며, 생성된 DSM의 표고값 차이를 이용해 변화를 탐지하는 D-DSM (Differential DSM) 방법이 일반적으로 사용된다. 그러나 D-DSM을 이용하는 기법은 두 DSM 간의 수직오차가 클 경우 건물의 변화를 탐지하기 위한 최소 수직좌표의 임계치를 정밀하게 적용하기에 어려움이 있다. 따라서 본 연구에서는 DTM (Digital Terrain Model)의 높이를 기준표고로 지정하고 구조물의 높이만을 표현하는 nDSM (Normalized DSM)을 기반으로 D-nDSM (Differential nDSM)을 생성하고 모폴로지 필터링을 거쳐 변화탐지를 진행하여 표고 오차에 따른 변화탐지의 오류를 줄이고자 하였다. 또한 도로변 건물의 추출 정밀도 향상을 위해 nDSM에서 도심지의 도로망을 추출하는 방안을 제시해 D-nDSM기법에 적용하였다. 도시 변화지역을 대상으로 두 시기의 스테레오 영상을 이용하여 실험을 진행하였고, D-DSM을 이용한 변화탐지기법과 D-nDSM기법, 도로선형을 추출해 D-nDSM에 적용한 탐지방법 등을 비교하여 결과를 얻었다. 단순 D-DSM을 이용한 기법에서 수직 임계치에 따라 약 30~55%의 정확도를 얻어낼 수 있었다. 또한 D-nDSM 기법의 적용시 59%의 정확도를 얻었으며, 노이즈 필터링의 과정을 거쳐 77.9%의 정확도를 얻었다, 최종적으로 대상지의 도로 선형을 추출해 적용하여 87.2%의 전체 정확도를 얻을 수 있었다.
It is well known that GPS technique can be used for high accuracy leveling positioning if a precise geoid model is available to use at a surveying point. In this study, KOGD2003 geoid model was developed in and around Korean peninsula and this geoid model could be achieved by combining GPS/leveling data with the formerly developed KOGD2002. To this end, the software for orthometric height obtaining and geodetic datum transformation has been implemented with the visual C++ language, what we called GPS-GeoL v.1.0. In order to evaluate the performance and the accuracy of the software, GPS field tests were carried out in the Korean second-order leveling network over Chollabukdo area. Results of the tests have shown that the mean value of the differences between outputs of the software developed in this research and officially announced orthometric heights by NGII (National Geographic Information Institute) was 0.0221 m and also those of RMS was 0.0332 m. Therefore, it was possible to conclude that the KOGD2003 and GPS-GeoL v.1.0 software could be used to determine orthometric heights for civil construction field applications with cm-level accuracy.
Building reconstruction attempts to generate geometric and radiometric models of existing buildings usually from sensory data, which have been traditionally aerial or satellite images, more recently airborne LIDAR data, or the combination of these data. Extensive studies on building reconstruction from these data have developed some competitive algorithms with reasonable performance and some degree of automation. Nevertheless, the level of details and completeness of the reconstructed building models often cannot reach the high standards that is now or will be required by various applications in future. Hence, the use of terrestrial sensory data that can provide higher resolution and more complete coverage has been intensively emphasized. We developed a fusion framework for building reconstruction from terrestrial sensory data, that is, points from a laser scanner, images from digital camera, and absolute coordinates from a total station. The proposed approach was then applied to reconstructing a building model from real data sets acquired from a large complex existing building. Based on the experimental results, we assured that the proposed approach cam achieve high resolution and accuracy in building reconstruction. The proposed approach can effectively contribute in developing an operational system producing large urban models for 3D GIS with reasonable resources.
최근 들어 경리단길처럼 빠른 성장세를 보이는 골목상권에 대한 사회적 관심이 높아지면서 골목상권 성장요인에 대한 분석의 필요성이 커지고 있다. 이 연구에서는 서울시의 골목상권 매출액 자료에 동적타임워핑(DTW)을 적용한 시계열 군집분석을 통해 성장 골목상권을 찾아내고 로지스틱 회귀분석을 통해 골목상권의 성장에 영향을 미치는 요인들을 분석하였다. 군집분석 결과, 성장상권은 서남권과 동북권, 동남권에 많이 분포하는 것으로 나타났지만 성장상권의 권역 내 비중은 서북권, 동북권, 서남권이 높게 나타난 반면 동남권은 낮게 나타났다. 로지스틱 회귀분석 결과, 20~30대가 매출액에 미치는 영향은 50대에 비해 낮지만 성장에 미치는 영향은 더 큰 것으로 나타났다. 또한, 소득이 높은 지역에 위치한 골목상권들은 성장 한계에 도달한 경우가 많아 정체 또는 쇠퇴하는 경향이 나타났다. 지하철에 가까운 골목상권일 경우 매출액은 더 많지만 성장성은 오히려 떨어지는 것으로 나타났다. 본 연구는 기존연구에서 다루어지지 않던 골목상권의 성장요인을 처음으로 분석했다는 점에서 의의를 둘 수 있다.
정규수치표면모델(NDSM: Normalized Digital Surface Model)은 원격탐사데이터의 상세 분석을 위한 핵심 적인 자료로 사용된다. 지상기준높이인 정규수치표면모델을 생성하기 위한 가장 간단한 방법은 수치표면모델(DSM: Digital Surface Model)에서 수치지형모델(DTM: Digital Terrain Model)을 차분하는 것이지만, 무인항공기 데이터의 경우 높은 해상도의 특성상 식생, 도심 구조물 등 많은 수의 복잡한 지형지물을 포함하고 있어 정확한 수치지형모델을 추출하기 어렵다. 본 연구에서는 무인항공기 데이터의 고해상도 특성을 잘 살리고 비용효율적인 수치지형모델 생성이 가능하도록 RGB 기반 식생 지수인 ExG (Excess Green)를 이용하여 낮은 ExG 값을 갖는 영역 확장법의 초기 시드점을 선정하였다. 이때 국소적으로 낮은 식생지수 값을 갖는 초기 시드점이 잘못 추출되는 문제를 해결하기 위하여 지역적 윈도우 분석을 적용하였다. 이후, 해당 위치의 수치표면모델값을 바탕으로 영역 확장법을 적용하여 이웃하는 지면 화소들을 병합하였다. 영역 확장법 적용을 위해 경사도 파라미터가 사용되었으며 최종적으로 병합된 세그먼트의 크기가 0.25㎡ 초과일 경우 초기 시드점을 지면점으로 결정하였다. 다양한 경사도 파라미터 값을 설정하여 무인항공기 데이터 기반 정규수치표면모델 생성의 최적 경사도 기준값을 도출하고자 하였다. 최종적으로 추출된 지면점들에 대한 정확도 평가를 수행하였으며 지면점들에 보간법을 적용하여 정규수치표면모델을 생성하고 제안 기법을 농업지역에 적용하여 농작물의 지상기준높이 추출 및 농업 모니터링 가능성을 검증하였다.
본 연구는 구 데이텀으로 구축된 수치지도를 지구 중심 데이텀으로의 변환에 필요한 새로운 변환 파라미터를 결정하고, 콜로케이션 방법으로부터 유도된 왜곡 모델링을 적용한 수치지도 좌표계의 변환에 관한 것이다. 국토지리정보원에서 GPS관측을 실시한 정밀 1차 기준점 190점 중에서 107점의 공통점을 파라미터 결정으로 사용하였으며, 최적 변환 파라미터의 결정을 위하여 107점을 제외한 83점의 공통점을 변환 정확도 검증에 이용하였다. 통계 분석을 통해 Molodensky-Badekas 모델로부터 산출된 파라미가 최적 파라미터로 결정되었으며, 왜곡 모델링을 수행한 결과 0.22m의 변환 정확도를 얻었다. 이는 7 파라미터만을 이용한 변환보다는 72%의 정확도가 향상된 결과를 나타내는 것이다. 또한, 1/50,000, 1/25,000과 1/5,000 수치지도의 변환 도구인 GDKtrans를 개발하였다. 이 변환 도구를 이용하여 6개 대도시 지역의 l/5,000 수치지도를 변환하고, 검사점 GPS 측량을 실시하여 변환정확도를 검사한 결과 약 1.9 m의 변환 정확도를 보였으나, l/5,000 수치지도의 위치 정보와 형상이 실제 위치 및 형상과 크게 일치하지 않고 있어 전면적으로 l/5,000의 수치지도를 재 제작하는 것이 타당하다고 판단된다.
본 연구에서는 모바일 레이저 스캐닝 데이터로부터 철도 선로탐지 및 선로모델 추출을 위한 방법을 제시하였다. 제안된 방법은 크게 세 단계로 구성된다. 첫째, 레이저 포인트로부터 잠재적인 철도 선로지역을 탐지하고, 초기 철도 선로궤적 방향을 추정한다. 둘째, 철도 선로에 관한 선 지식을 이용하여 첫번째 스트립에서 초기 선로위치를 결정한다. 여기서, 스트립은 국부 탐색공간을 나타내며 철도 선로궤적에 수직인 방향으로 정의된다. 마지막으로, 초기 선로위치에서 GMM-EM기반 분류방법을 통해 선로 포인트들을 탐지한 후 초기 선로 모델을 생성하고 스트립을 데이터 처리 기본단위로 하여 tracking by detection관점에서 연속적으로 선로모델을 생성하였다. 제안된 방법의 주요 특징은 다음과 같다. 첫째, 이전 스트립에서 생성된 선로 모델을 가이드 라인으로 다음 스트립에 전파되어 국부 탐색영역을 예측하여 선로 포인트를 탐지하는 하는데 있어서 처리 복잡성을 줄일 수 있었다. 둘째, 선로 포인트 탐지와 선로 모델링을 동시에 진행 함으로써 데이터 처리 시간을 최소화 할 수 있었다. 개발된 알고리즘은 C++ 프로그램 언어로 구현되었고 도시지역에서 MMS 측량을 통해 취득된 LiDAR 데이터(경부선 일부 구간)를 이용하여 성능 테스트를 진행하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.