• Title/Summary/Keyword: Urban cartography

Search Result 316, Processing Time 0.017 seconds

A Study on the Application of a Drone-Based 3D Model for Wind Environment Prediction

  • Jang, Yeong Jae;Jo, Hyeon Jeong;Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.2
    • /
    • pp.93-101
    • /
    • 2021
  • Recently, with the urban redevelopment and the spread of the planned cities, there is increasing interest in the wind environment, which is related not only to design of buildings and landscaping but also to the comfortability of pedestrians. Numerical analysis for wind environment prediction is underway in many fields, such as dense areas of high-rise building or composition of the apartment complexes, a precisive 3D building model is essentially required in this process. Many studies conducted for wind environment analysis have typically used the method of creating a 3D model by utilizing the building layer included in the GIS (Geographic Information System) data. These data can easily and quickly observe the flow of atmosphere in a wide urban environment, but cannot be suitable for observing precisive flow of atmosphere, and in particular, the effect of a complicated structure of a single building on the flow of atmosphere cannot be calculated. Recently, drone photogrammetry has shown the advantage of being able to automatically perform building modeling based on a large number of images. In this study, we applied photogrammetry technology using a drone to evaluate the flow of atmosphere around two buildings located close to each other. Two 3D models were made into an automatic modeling technique and manual modeling technique. Auto-modeling technique is using an automatically generates a point cloud through photogrammetry and generating models through interpolation, and manual-modeling technique is a manually operated technique that individually generates 3D models based on point clouds. And then the flow of atmosphere for the two models was compared and analyzed. As a result, the wind environment of the two models showed a clear difference, and the model created by auto-modeling showed faster flow of atmosphere than the model created by manual modeling. Also in the case of the 3D mesh generated by auto-modeling showed the limitation of not proceeding an accurate analysis because the precise 3D shape was not reproduced in the closed area such as the porch of the building or the bridge between buildings.

Evaluation of vegetation index accuracy based on drone optical sensor (드론 광학센서 기반의 식생지수 정확도 평가)

  • Lee, Geun Sang;Cho, Gi Sung;Hwang, Jee Wook;Kim, Pyoung Kwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.2
    • /
    • pp.135-144
    • /
    • 2022
  • Since vegetation provides humans with various ecological spaces and is also very important in terms of water resources and climatic environment, many vegetation monitoring studies using vegetation indexes based on near infrared sensors have been conducted. Therefore, if the near infrared sensor is not provided, the vegetation monitoring study has a practical problem. In this study, to improve this problem, the NDVI (Normalized Difference Vegetation Index) was used as a reference to evaluate the accuracy of the vegetation index based on the optical sensor. First, the Kappa coefficient was calculated by overlapping the vegetation survey point surveyed in the field with the NDVI. As a result, the vegetation area with a threshold value of 0.6 or higher, which has the highest Kappa coefficient of 0.930, was evaluated based on optical sensor based vegetation index accuracy. It could be selected as standard data. As a result of selecting NDVI as reference data and comparing with vegetation index based on optical sensor, the Kappa coefficients at the threshold values of 0.04, 0.08, and 0.30 or higher were the highest, 0.713, 0.713, and 0.828, respectively. In particular, in the case of the RGBVI (Red Green Red Vegetation Index), the Kappa coefficient was high at 0.828. Therefore, it was found that the vegetation monitoring study using the optical sensor is possible even in environments where the near infrared sensor is not available.

Significance Analysis of Facility Fires Though Spatial Econometrics Assessment (공간계량분석 방법에 따른 시설물 화재 발생 유의성 분석)

  • Seo, Min Song;Yoo, Hwan Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.281-293
    • /
    • 2020
  • Recently, large and small fires have been happening more often in Korea. Fire is one of the most frequent disasters along with traffic accidents in korean cities, and this frequency is closely related to the land use and the type of facilities. Therefore, in this study, the significance of fires was analyzed by considering land use, facility types, human and social factors and using 10 years of fire data in Jinju city. Based on this, OLS (Ordinary Least Square) regression analysis, SLM (Spatial Lag Model) and SEM (Spatial Error Model) using space weights, were compared and analyzed considering the location of the fire and each factor, then a statistical model with high suitability was presented. As a result, LISA analysis of spatial distribution patterns of fires in Jinju city was conducted, and it was proved that the frequency of fires was high in the order as follow, central commercial area, industrial area and residential area. Multiple regression analysis was performed by integrating demographic, social, and physical variables. Therefore, the three models were compared and analyzed by applying spatial weighting to the derived factors. As a result of the significance test, the spatial error model was analyzed to be the most significant. The facilities that have the highest correlation with fire occurrence were second type neighborhood facilities, followed by detached house, first type neighborhood facilities, number of households, and sales facilities. The results of this study are expected to be used as significant data to identify factors and manage fire safety in urban areas. Also, through the analysis of the standard deviation ellipsoid, the distribution characteristics of each facility in the residential area, industrial area, and central commercial area among the use areas were analyzed. In, the second type neighborhood facility with the highest fire risk was concentrated in the center. The results of these studies are expected to be used as useful data for identifying factors and managing fire safety in urban areas.

Urban Building Change Detection Using nDSM and Road Extraction (nDSM 및 도로망 추출 기법을 적용한 도심지 건물 변화탐지)

  • Jang, Yeong Jae;Oh, Jae Hong;Lee, Chang No
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.3
    • /
    • pp.237-246
    • /
    • 2020
  • Recently, as high resolution satellites data have been serviced, frequent DSM (Digital Surface Model) generation over urban areas has been possible. In addition, it is possible to detect changes using a high-resolution DSM at building level such that various methods of building change detection using DSM have been studied. In order to detect building changes using DSM, we need to generate a DSM using a stereo satellite image. The change detection method using D-DSM (Differential DSM) uses the elevation difference between two DSMs of different dates. The D-DSM method has difficulty in applying a precise vertical threshold, because between the two DSMs may have elevation errors. In this study, we focus on the urban structure change detection using D-nDSM (Differential nDSM) based on nDSM (Normalized DSM) that expresses only the height of the structures or buildings without terrain elevation. In addition, we attempted to reduce noise using a morphological filtering. Also, in order to improve the roadside buildings extraction precision, we exploited the urban road network extraction from nDSM. Experiments were conducted for high-resolution stereo satellite images of two periods. The experimental results were compared for D-DSM, D-nDSM, and D-nDSM with road extraction methods. The D-DSM method showed the accuracy of about 30% to 55% depending on the vertical threshold and the D-nDSM approaches achieved 59% and 77.9% without and with the morphological filtering, respectively. Finally, the D-nDSM with the road extraction method showed 87.2% of change detection accuracy.

Development of KOGD2003 Geoid Model and its Implementation by Visual Software

  • LEE Suk-Bae;SUH Yong-Woon
    • Korean Journal of Geomatics
    • /
    • v.5 no.1
    • /
    • pp.43-49
    • /
    • 2005
  • It is well known that GPS technique can be used for high accuracy leveling positioning if a precise geoid model is available to use at a surveying point. In this study, KOGD2003 geoid model was developed in and around Korean peninsula and this geoid model could be achieved by combining GPS/leveling data with the formerly developed KOGD2002. To this end, the software for orthometric height obtaining and geodetic datum transformation has been implemented with the visual C++ language, what we called GPS-GeoL v.1.0. In order to evaluate the performance and the accuracy of the software, GPS field tests were carried out in the Korean second-order leveling network over Chollabukdo area. Results of the tests have shown that the mean value of the differences between outputs of the software developed in this research and officially announced orthometric heights by NGII (National Geographic Information Institute) was 0.0221 m and also those of RMS was 0.0332 m. Therefore, it was possible to conclude that the KOGD2003 and GPS-GeoL v.1.0 software could be used to determine orthometric heights for civil construction field applications with cm-level accuracy.

  • PDF

A Framework for Building Reconstruction Based on Data Fusion of Terrestrial Sensory Data

  • Lee, Impyeong;Choi, Yunsoo
    • Korean Journal of Geomatics
    • /
    • v.4 no.2
    • /
    • pp.39-45
    • /
    • 2004
  • Building reconstruction attempts to generate geometric and radiometric models of existing buildings usually from sensory data, which have been traditionally aerial or satellite images, more recently airborne LIDAR data, or the combination of these data. Extensive studies on building reconstruction from these data have developed some competitive algorithms with reasonable performance and some degree of automation. Nevertheless, the level of details and completeness of the reconstructed building models often cannot reach the high standards that is now or will be required by various applications in future. Hence, the use of terrestrial sensory data that can provide higher resolution and more complete coverage has been intensively emphasized. We developed a fusion framework for building reconstruction from terrestrial sensory data, that is, points from a laser scanner, images from digital camera, and absolute coordinates from a total station. The proposed approach was then applied to reconstructing a building model from real data sets acquired from a large complex existing building. Based on the experimental results, we assured that the proposed approach cam achieve high resolution and accuracy in building reconstruction. The proposed approach can effectively contribute in developing an operational system producing large urban models for 3D GIS with reasonable resources.

  • PDF

Analyzing Growth Factors of Alley Markets Using Time-Series Clustering and Logistic Regression (시계열 군집분석과 로지스틱 회귀분석을 이용한 골목상권 성장요인 연구)

  • Kang, Hyun Mo;Lee, Sang-Kyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.535-543
    • /
    • 2019
  • Recently, growing social interest in alley markets, which have shown rapid growth like Gyeonglidan-gil street in Seoul, has led to the need for an analysis of growth factors. This paper aims at exploring growing alley markets through time-series clustering using DTW (Dynamic Time Warping) and examining the growth factors through logistic regression. According to cluster analysis, the number of growing markets of the Northeast, the Southwest, and the Southeast were much more than the Northwest but the proportion in region of the Northwest, the Northeast, and the Southwest were much more than the Southeast. Logistic regression results show that people in 20s and 30s have a lower impact on sales than those in 50s, but have a greater impact on growth of alley market. Alley markets located in high-income areas often reached their growth limits, indicating a tendency to stagnate or decline. The proximity of a subway station effected positive on sales but negative on growth. This research is an advanced study in that the causes of sales growth of alley markets is examined, which has not been examined in the preceding study.

Normalized Digital Surface Model Extraction and Slope Parameter Determination through Region Growing of UAV Data (무인항공기 데이터의 영역 확장법 적용을 통한 정규수치표면모델 추출 및 경사도 파라미터 설정)

  • Yeom, Junho;Lee, Wonhee;Kim, Taeheon;Han, Youkyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.499-506
    • /
    • 2019
  • NDSM (Normalized Digital Surface Model) is key information for the detailed analysis of remote sensing data. Although NDSM can be simply obtained by subtracting a DTM (Digital Terrain Model) from a DSM (Digital Surface Model), in case of UAV (Unmanned Aerial Vehicle) data, it is difficult to get an accurate DTM due to high resolution characteristics of UAV data containing a large number of complex objects on the ground such as vegetation and urban structures. In this study, RGB-based UAV vegetation index, ExG (Excess Green) was used to extract initial seed points having low ExG values for region growing such that a DTM can be generated cost-effectively based on high resolution UAV data. For this process, local window analysis was applied to resolve the problem of erroneous seed point extraction from local low ExG points. Using the DSM values of seed points, region growing was applied to merge neighboring terrain pixels. Slope criteria were adopted for the region growing process and the seed points were determined as terrain points in case the size of segments is larger than 0.25 ㎡. Various slope criteria were tested to derive the optimized value for UAV data-based NDSM generation. Finally, the extracted terrain points were evaluated and interpolation was performed using the terrain points to generate an NDSM. The proposed method was applied to agricultural area in order to extract the above ground heights of crops and check feasibility of agricultural monitoring.

Development of Coordinate Transformation Tool for Existing Digital Map (수치지도 좌표계 변환 도구 개발)

  • 윤홍식;조재명;송동섭;김명호;조흥묵
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • This study describes the development of coordinate transformation tool for transforming the digital map using newly derived transformation parameters which are determined from the data referred to the local geodetic datum and the geocentric datum (ITRF2000) and the distortion modelling derived from collocation method. We prepared 190 common points and used 107 points to calculate 7 transformation parameters. In order to evaluate an accuracy of coordinate transformation, 83 common points were tested. In this study, we used Molodensky-Badekas model to derive the 7 transformation Parameters. An accuracy of 0.22m was obtained applying 7 Parameters transformation and the distortion modelling together. It shows that the accuracy of coordinate transformation is improved 72% against the result of 7 parameters transformation only. We developed the transformation tool, GDKtrans, which can be transformed the digital map of scales 1/50,000, 1/25,000 and 1/5,000. We also analyzed the digital map of l/5,000 at six urban areas by GPS observations. The result shows less RMSE of about 1.9 m and large disagreement at position and features. Consequently, we suggests that l/5,000 digital map is necessary of whole revision.

Railway Track Extraction from Mobile Laser Scanning Data (모바일 레이저 스캐닝 데이터로부터 철도 선로 추출에 관한 연구)

  • Yoonseok, Jwa;Gunho, Sohn;Jong Un, Won;Wonchoon, Lee;Nakhyeon, Song
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.2
    • /
    • pp.111-122
    • /
    • 2015
  • This study purposed on introducing a new automated solution for detecting railway tracks and reconstructing track models from the mobile laser scanning data. The proposed solution completes following procedures; the study initiated with detecting a potential railway region, called Region Of Interest (ROI), and approximating the orientation of railway track trajectory with the raw data. At next, the knowledge-based detection of railway tracks was performed for localizing track candidates in the first strip. In here, a strip -referring the local track search region- is generated in the orthogonal direction to the orientation of track trajectory. Lastly, an initial track model generated over the candidate points, which were detected by GMM-EM (Gaussian Mixture Model-Expectation & Maximization) -based clustering strip- wisely grows to capture all track points of interest and thus converted into geometric track model in the tracking by detection framework. Therefore, the proposed railway track tracking process includes following key features; it is able to reduce the complexity in detecting track points by using a hypothetical track model. Also, it enhances the efficiency of track modeling process by simultaneously capturing track points and modeling tracks that resulted in the minimization of data processing time and cost. The proposed method was developed using the C++ program language and was evaluated by the LiDAR data, which was acquired from MMS over an urban railway track area with a complex railway scene as well.