• Title/Summary/Keyword: Urban Analysis

Search Result 7,538, Processing Time 0.04 seconds

Analysis of The Human Thermal Environment in Jeju's Public Parking Lots in Summer and Suggestion for Its Modification (제주시 공영 주차장 내 여름철 인간 열환경 분석 및 저감 방안 제안)

  • Choi, Yuri;Park, Sookuk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.3
    • /
    • pp.18-32
    • /
    • 2024
  • This study aims to analyze the summer human thermal environment in Jeju City's outdoor parking lots by measuring microclimate data and comparing pavement and vegetation albedoes and elements through computer simulations. In measured cases, results due to albedo showed no significance, but there was a significant difference between sunny and shaded areas by trees. The sunny area had a PET (physiological equivalent temperature) in the 'very hot' level, while the shaded area exhibited a 2-step lower 'warm' level. UTCI (universal thermal climate index) also showed that the sunny area was in the 'very strong heat stress' level, whereas the shaded area was 1-step lower in the 'strong heat stress' level, confirming the role of trees in reducing incoming solar radiant energy. Simulation results, using the measured albedoes, closely resembled the measured results. Regarding vegetation, scenarios with a wide canopy, high leaf density, and narrow planting spacing were effective in mitigating the human thermal environment, and the differences due to tree height varied across scenarios. The scenario with the lowest PET value was H9W9L3D8 (tree height 9m, canopy width 9m, leaf area index 3.0, planting spacing 8m), indicating a 0.7-step decrease compared to the current landscaping scenario. Thus, it was confirmed that, among landscaping elements, trees have a significant impact on the summer human thermal environment compared to ground pavement.

Analyzing the Effects of Low Emission Bus Zones Using Bus Information System Data (버스정보시스템 데이터를 활용한 Low Emission Bus Zone 도입의 탄소배출 저감 효과 분석)

  • Hye Inn Song;Kangwon Shin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.196-207
    • /
    • 2023
  • As part of measures to address the climate crisis, buses are also being converted to electric and hydrogen buses. Local authorities need to prioritize carbon emissions when allocating newly introduced and converted electric and hydrogen buses, and as a method, consider the introduction of Low Emission Bus Zones (LEBZ) to propose the reduction of pollution from specific links. To introduce LEBZ, it is necessary to compare the carbon emissions before and after its implementation, yet there is a shortage of studies that focus solely on buses or analyze the effects of introducing LEBZ to specific links. In this paper, we utilized bus information system data to calculate and compare the effects of introducing LEBZ to bus priority lanes in Jeju. We categorized scenarios into five groups, with scenarios 1 through 4 involving the introduction of LEBZ, and scenario 5 designating cases where LEBZ was not introduced. Comparative results confirmed that in scenarios with LEBZ introduction, the reduction per km reached a maximum of 0.097t per km, whereas in cases without LEBZ, it amounted to 0.022t per km, demonstrating higher efficiency. It underscores the significance of conducting carbon emission calculations and comparing the effects of LEBZ introduction using bus information system data, which can be directly applied by local authorities to make informed and rational decisions.

Prediction of Damages and Evacuation Strategies for Gas Leaks from Chlorine Transport Vehicles (염소 운송차량 가스누출시 피해예측 및 대피방안)

  • Yang, Yong-Ho;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.407-417
    • /
    • 2024
  • The objective of this study is to predict and reduce potential damage caused by chlorine gas leaks, a hazardous material, when vehicles transporting it overturn due to accidents or other incidents. The goal is to forecast the anticipated damages caused by chlorine toxicity levels (ppm) and to design effective response strategies for mitigating them. To predict potential damages, we conducted quantitative assessments using the ALOHA program to calculate the toxic effects (ppm) and damage distances resulting from chlorine leaks, taking into account potential negligence of drivers during transportation. The extent of damage from toxic gas leaks is influenced by various factors, including the amount of the leaked hazardous material and the meteorological conditions at the time of the leak. Therefore, a comprehensive analysis of damage distances was conducted by examining various scenarios that involved variations in the amount of leakage and weather conditions. Under intermediate conditions (leakage quantity: 5 tons, wind speed: 3 m/s, atmospheric stability: D), the estimated distance for exceeding the AEGL-2 level of 2 ppm was calculated to be 9 km. This concentration poses a high risk of respiratory disturbance and potential human casualties, comparable to the toxicity of hydrogen chloride. In particular, leaks in urban areas can lead to significant loss of life. In the event of a leakage incident, we proposed a plan to minimize damage by implementing appropriate response strategies based on the location and amount of the leak when an accident occurs.

Perception Survey for Demonstration Service using Drones (드론을 활용한 실증 서비스에 대한 인식 조사)

  • Jina Ok;Soonduck Yoo;Hyojin Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.125-132
    • /
    • 2024
  • The purpose of this study is to discover a drone utilization model tailored to local characteristics, propose directions for building a drone demonstration city based on demand surveys for drone activation, and suggest ways to utilize and support a drone application system. First, according to the survey results, there was a high understanding of and necessity for drone demonstration projects, particularly in addressing urban issues, which were deemed to have a significant impact. Second, based on the analysis of priorities and short- and long-term approaches, disaster-related tasks were evaluated as a priority, requiring an approach through medium- to long-term strategies. Third, it was noted that budgetary considerations emerged as the most critical issue during project implementation. Practitioners and experts expressed willingness to actively introduce drone-based technologies into their work when budget and technology were ready. Budgetary constraints were identified as the most significant obstacle to proper implementation, emphasizing the need for resolution. Fourth, the necessity of demand surveys during project development was identified in certain areas. Demand surveys were deemed essential for drone-based demonstration city construction, and a survey indicated that public leadership in this regard was also necessary. Fifth, concerning approaches in specific areas, the field of safety and disaster management was highlighted as the most crucial for application.

A Study on the Vulnerability Assessment of Solar Power Generation Facilities Considering Disaster Information (재해정보를 고려한 태양광발전시설의 취약성 평가에 관한 연구)

  • Heejin Pyo
    • Land and Housing Review
    • /
    • v.15 no.2
    • /
    • pp.57-71
    • /
    • 2024
  • This study aims to develop an evaluation method for solar power facilities considering disaster impacts and to analyse the vulnerabilities of existing facilities. Haenam-gun in Jeollanam-do, where the reassessment of existing facilities is urgent, was selected as the study area. To evaluate the vulnerability from a more objective perspective, principal component analysis and entropy methods were utilised. Seven vulnerability assessment indicators were selected: maximum hourly rainfall, maximum wind speed, number of typhoon occurrence days, number of rainfall days lasting more than five days, maximum daily rainfall, impermeable area ratio, and population density. Among these, maximum hourly rainfall, maximum wind speed, maximum daily rainfall, and number of rainfall days lasting more than five days were found to have the highest weights. The overlay of the derived weights showed that the southeastern regions of Haenam-eup and Bukil-myeon were classified as Grade 1 and 2, whereas the northern regions of Hwawon-myeon, Sani-myeon, and Munnae-myeon were classified as Grade 4 and 5, indicating differences in vulnerability. Of the 2,133 facilities evaluated, 91.1% were classified as Grade 3 or higher, indicating a generally favourable condition. However, there were more Grade 1 facilities than Grade 2, highlighting the need for countermeasures. This study is significant in that it evaluates solar power facilities considering urban disaster resilience and is expected to be used as a basic resource for the installation of new facilities or the management and operation of existing ones.

A Study on the Density Analysis of Multi-objects Using Drone Imaging (드론 영상을 활용한 다중객체의 밀집도 분석 연구)

  • WonSeok Jang;HyunSu Kim;JinMan Park;MiSeon Han;SeongChae Baek;JeJin Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.69-78
    • /
    • 2024
  • Recently, the use of CCTV to prevent crowd accidents has been promoted, but research is needed to compensate for the spatial limitations of CCTV. In this study, pedestrian density was measured using drone footage, and based on a review of existing literature, a threshold of 6.7 people/m2 was selected as the cutoff risk level for crowd accidents. In addition, we conducted a preliminary study to determine drone parameters and found that the pedestrian recognition rate was high at a drone altitude of 20 meters and an angle of 60°. Based on a previous study, we selected a target area with a high concentration of pedestrians and measured pedestrian density, which was found to be 0.27~0.30 per m2. The study shows it is possible to measure risk levels by determining pedestrian densities in target areas using drone images. We believe drone surveillance will be utilized for crowd safety management in the near future.

Game Theory Application in Wetland Conservation Across Various Hypothetical City Sizes (다양한 이론적 도시규모에서의 습지 보전을 위한 게임 이론 적용)

  • Ran-Young Im;Ji Yoon Kim;Yuno Do
    • Journal of Wetlands Research
    • /
    • v.26 no.1
    • /
    • pp.10-20
    • /
    • 2024
  • The conservation and restoration of wetlands are essential tasks for the sustainable development of human society and the environment, providing vital benefits such as biodiversity maintenance, natural disaster mitigation, and climate change alleviation. This study aims to analyze the strategic interactions and interests among various stakeholders using game theory and to provide significant grounds for policy decisions related to wetland restoration and development. In this study, hypothetical scenarios were set up for three types of cities: large, medium, and small. Stakeholders such as governments, development companies, environmental groups, and local residents were identified. Strategic options for each stakeholder were developed, and a payoff matrix was established through discussions among wetland ecology experts. Subsequently, non-cooperative game theory was applied to analyze Nash equilibria and Pareto efficiency. In large cities, strategies of 'Wetland Conservation' and 'Eco-Friendly Development' were found beneficial for all stakeholders. In medium cities, various strategies were identified, while in small cities, 'Eco-Friendly Development' emerged as the optimal solution for all parties involved. The Pareto efficiency analysis revealed how the optimal solutions for wetland management could vary across different city types. The study highlighted the importance of wetland conservation, eco-friendly development, and wetland restoration projects for each city type. Accordingly, policymakers should establish regulations and incentives that harmonize environmental protection and urban development and consider programs that promote community participation. Understanding the roles and strategies of stakeholders and the advantages and disadvantages of each strategy is crucial for making more effective policy decisions.

Natural Frequency Analysis of Sleeper Floating Track System using Modal Test Technique (모달시험기법을 이용한 침목플로팅궤도의 고유진동수 분석)

  • Jung-Youl Choi
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.833-838
    • /
    • 2024
  • The urban railway sleeper floating track(STEDEF) is a structure that structurally separates the sleepers and the concrete bed using sleeper boots and resilience pads to reduce vibration transmitted to the concrete bed. Recently, the resilience pads of sleeper floating tracks that have been in use for more than 20 years are deteriorating. Accordingly, in order to evaluate the performance of the resilience pad, a static spring stiffness test is being performed after extracting the resilience pad. This evaluation technique is performed after replacing the resilience pad in use. However, the track natural frequency can change depending on the resilience pad spring stiffness and the uplift and subsidence of the concrete bed. In this study, modal testing technique was used to evaluate the track natural frequency. For this purpose, the sleeper boots material, resilience pad spring stiffness, and track natural frequency according to concrete bed uplift and subsidence were measured using modal tests at a laboratory scale. It was analyzed that the natural frequency of the sleeper floating track was directly affected by changes in the spring stiffness of the resilience pad. In addition, the change in natural frequency due to the uplift and subsidence of the concrete bed was also found to be large. Therefore, it is believed that the modal test technique presented in this study can be used to evaluate the resilience pad deterioration and voided sleepers.

Groundwater Flow Analysis During Excavation for Underground Tunnel Construction (지하 터널 건설을 위한 굴착 시 지하수 유동 분석)

  • Sungyeol Lee;Wonjin Baek;Jinyoung Kim;Changsung Jeong;Jaemo Kang
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.6
    • /
    • pp.19-24
    • /
    • 2024
  • Urban densification has necessitated the development of subterranean spaces such as subway networks and underground tunnels to facilitate the dispersal and movement of populations. Development of these underground spaces requires excavation from the ground surface, which can induce groundwater flow and potentially lead to ground subsidence and sinkholes, damaging structures. To mitigate these risks, it is essential to model groundwater flow prior to construction, analyze its characteristics, and predict potential groundwater discharge during excavation. In this study, we collected meteorological, topographical, and soil conditions data for the city of ○○, where tunnel construction was planned. Using the Visual MODFLOW program, we modeled the groundwater flow. Excavation sections were set as drainage points to monitor groundwater discharge during the excavation process, and the effectiveness of seepage control measures was assessed. The model was validated by comparing measured groundwater levels with those predicted by the model, yielding a coefficient of determination of 0.87. Our findings indicate that groundwater discharge is most significant at the beginning of the excavation. Additionally, the presence of seepage barriers was found to reduce groundwater discharge by approximately 59%.

Case Study on an Oral Health Care Program for Older Adults Based on a Public-Private-Academic Partnership

  • Jin-Sun Choi;Soo-Myoung Bae;Sun-Jung Shin;Bo-Mi Shin;Hye-Young Yoon;Hyo-Jin Lee
    • Journal of dental hygiene science
    • /
    • v.24 no.2
    • /
    • pp.115-123
    • /
    • 2024
  • Background: The population of Gangneung City in South Korea has shown a gradual increase in the proportion of individuals aged 65 years and older, and the most frequently reported diseases for several years have consistently been periodontal diseases, including gingivitis and periodontitis. The regional imbalance in the distribution of dental personnel and resources has emerged as a problem of inequality in the use of dental care. It has been advocated to identify areas with disadvantages in dental care and develop public dental policies based on that. This study aimed to develop a customized oral healthcare program for local seniors based on a Public-Private-Academic Partnership, and to evaluate the oral health status of older adults in Gangneung City. Methods: The participants were residents aged 60 years and above in Gangneung City. A questionnaire including general information, systemic health status, and oral health status was administered to the participants. In addition, oral healthcare and education tailored to each individual's health status were provided once or twice based on their oral health status. The collected data were analyzed using IBM SPSS Statistics 25 for descriptive statistical analysis. Results: Among the older adults in Gangneung City, 75% had at least one prosthesis and exhibited symptoms of gingivitis or periodontitis. Additionally, the modified sulcus bleeding index decreased among participants who underwent the program twice. Over 90% of the participants expressed satisfaction with the program. Conclusion: The program appeared to contribute positively to the oral health promotion among local seniors. Further oral healthcare programs should focus on seniors in rural and old urban areas to reduce disparities in oral health across regions.