DOI QR코드

DOI QR Code

Groundwater Flow Analysis During Excavation for Underground Tunnel Construction

지하 터널 건설을 위한 굴착 시 지하수 유동 분석

  • Sungyeol Lee (Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Wonjin Baek (Department of Rural & Biosystems Engineering, Chonnal National University) ;
  • Jinyoung Kim (Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Changsung Jeong (Dong-A Eng. Co. Ltd.) ;
  • Jaemo Kang (Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • Received : 2024.05.08
  • Accepted : 2024.05.14
  • Published : 2024.06.01

Abstract

Urban densification has necessitated the development of subterranean spaces such as subway networks and underground tunnels to facilitate the dispersal and movement of populations. Development of these underground spaces requires excavation from the ground surface, which can induce groundwater flow and potentially lead to ground subsidence and sinkholes, damaging structures. To mitigate these risks, it is essential to model groundwater flow prior to construction, analyze its characteristics, and predict potential groundwater discharge during excavation. In this study, we collected meteorological, topographical, and soil conditions data for the city of ○○, where tunnel construction was planned. Using the Visual MODFLOW program, we modeled the groundwater flow. Excavation sections were set as drainage points to monitor groundwater discharge during the excavation process, and the effectiveness of seepage control measures was assessed. The model was validated by comparing measured groundwater levels with those predicted by the model, yielding a coefficient of determination of 0.87. Our findings indicate that groundwater discharge is most significant at the beginning of the excavation. Additionally, the presence of seepage barriers was found to reduce groundwater discharge by approximately 59%.

도심지의 인구 밀집화로 인해 인구의 분산 및 이동을 위해 지하철도 및 지하 터널의 개발과 같은 지하공간에 대한 개발이 이루어지고 있다. 지하공간을 개발하기 위해서는 지반 상부로부터 굴착이 진행되어야 하며, 굴착 시 주변 지하수 유동이 발생할 수 있다. 지하수의 유동은 지반의 침하 및 함몰을 야기하여 구조물의 손상을 발생시킬 수 있다. 따라서 시공 전 지하수 유동을 모델링하여 지하수 유동 특성을 분석하고 굴착 시 발생하는 지하수 유출을 예측하여 대비해야 한다. 본 연구에서는 지하터널 건설을 위한 굴착공사가 이루어지는 ○○시를 대상으로 기상 및 지형, 지반 조건 등을 수집하여 Visual MODFLOW 프로그램을 통해 지하수 유동을 모델링하였다. 또한, 모델을 통해 굴착구간을 배수 지점으로 설정하여 굴착 공정에 따른 지하수 유출을 확인하였으며, 차수 조건에 따른 지하수 유출 감소 효과를 확인하였다. 실측 지하수위와 모델의 지하수위를 비교하여 모델을 검증한 결과, 0.87의 결정계수가 도출되었으며, 해당 모델을 통해 대상지역 굴착 공정에 따른 지하수 유동을 비교하였다. 그 결과, 굴착 초기에 지하수 유출이 가장 많이 발생하는 것으로 나타났다. 또한, 차수 유무에 따른 지하수 유출 저감 효과를 확인한 결과, 차수 구조물 설치 시 약 59%의 지하수 유출 저감 효과를 보이는 것으로 나타났다.

Keywords

Acknowledgement

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업) 사업으로 수행되었습니다(지하 공간 정보 정확도 개선 및 매설관 안전관리 기술개발(5/5)).

References

  1. Bae, S. K. (1989), Groundwater flow analysis using a steady state three-dimensional model in an upland area, Journal of Korean Association of Hydrological Sciences, Vol. 22, No. 1, pp. 81~90. (In Korean)
  2. Choi, J. H. (2015), Evaluation for the rate of groundwater and simulation of contamination using MODFLOW, The University of Seoul, Degree of Master thesis. (In Korean)
  3. Chung, S. O., Lee, Y. D. and Min, B. H. (1994), An analysis of groundwater flow at Bugok area using MODFLOW, Water for future, Vol. 27, Issue. 1, pp. 79~88. (In Korean)
  4. Dayana, C. C., Edgar, Q. and Mehrab, M. (2024), Land subsidence due to groundwater exploitation in unconfined aquifers: experimental and numerical assessment with computational fluid dynamics, Water, Vol. 16, No. 3, 467.
  5. Freeze, R. A. and Witherspoon, P. A. (1966), Theoretical analysis of regional groundwater flow ; 1. Analytical and numerical solutions to the mathematical model. Water Resources Research, Vol. 2, Issue. 4, pp. 641~656. https://doi.org/10.1029/WR002i004p00641
  6. Freeze, R. A. (1971), Three-dimensional, transient, saturated-unsaturated flow in a groundwater basin, Water Resources Research, Vol. 7, Issue. 2, pp. 347~366. https://doi.org/10.1029/WR007i002p00347
  7. Hubbert, M. K. (1940), The theory of groundwater motion, The Journal of Geology, Vol. 48, No. 8, pp. 785~944. https://doi.org/10.1086/624930
  8. Jacob (1979), Hydraulics of groundwater, McGraw-Hill Book Co., New York.
  9. Jeong, C. S. (2021), Analysis of groundwater fluctuation and stability of back-ground according to installation of retaining walls, Chonnam National University Degree of Doctor. (In Korean)
  10. Jung, B. S., Koo, M. H., Kim, Y. J. and Lee, J. Y. (2004), Sensitivity analysis of a transient groundwater flow modeling for tunnel excavation, The Journal of Engineering Geology, Vol. 14, No. 3, pp. 287~300. (In Korean)
  11. Kim, H. S., Park, J. M. and Jang, Y. S. (2006), 3-D groundwater flow analysis of excavated ground by reliability method, Journal of the Korean Geotechnical Society, Vol. 22, No. 10, pp. 69~76. (In Korean)
  12. Kim, H. S. (2004), Reliability approach to groundwater flow analysis in underground excavations, Dongguk University Degree of Doctor thesis. (In Korean)
  13. Kim, M. C. (2018), Hydraulic Watershed Classification and Flow Characteristics Analysis of Groundwater in Jeju Island, Jeju Natonal University, Degree of Doctor thesis. (In Korean)
  14. Lee, J. H. and Kim, H. M. (2008), Study on environmental impact and mitigation plan for groundwater outflow during tunnel excavation, Environment Institute, Vol. 7, No. 1, pp. 32~52. (In Korean) https://doi.org/10.17330/joep.7.1.200803.32
  15. Lee, M. W., Lee, J. Y. and Jang, J. W. (2024), Numerical modeling of groundwater system with tunnel construction in an urban area of Korea: implications for land subsidence and mitigation measures., Environmental Earth Sciences, Vol. 83, 80.
  16. Oh, S. H., Kim, Y. C. and Koo, M. H. (2011), Modeling artificial groundwater recharge in the Hancheon drainage area, Jeju island, Korea, J. Soil & Groundwater Env., Vol. 16, No. 6, pp. 34~45. (In Korean) https://doi.org/10.7857/JSGE.2011.16.6.034
  17. Seong, J. H., Jung, S. H. and Shin, j. Y. (2011), A study for safety management on ground excavation by analysis of accident events, ournal of The Korea Institute for Structural Maintenance and Inspection, Vol. 15, No. 6, pp. 175~183. (In Korean) https://doi.org/10.11112/jksmi.2011.15.6.175
  18. Wang, H. F. and Anderson, M. P. (1982), Introduction to Groundwater Modeling-Finite Difference and Finite Element Method, W. H. Freeman and company.