• Title/Summary/Keyword: Uranium-molybdenum U-Mo

Search Result 18, Processing Time 0.024 seconds

DEVELOPMENT OF HIGH-DENSITY U/AL DISPERSION PLATES FOR MO-99 PRODUCTION USING ATOMIZED URANIUM POWDER

  • Ryu, Ho Jin;Kim, Chang Kyu;Sim, Moonsoo;Park, Jong Man;Lee, Jong Hyun
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.979-986
    • /
    • 2013
  • Uranium metal particle dispersion plates have been proposed as targets for Molybdenum-99 (Mo-99) production to improve the radioisotope production efficiency of conventional low enriched uranium targets. In this study, uranium powder was produced by centrifugal atomization, and miniature target plates containing uranium particles in an aluminum matrix with uranium densities up to 9 $g-U/cm^3$ were fabricated. Additional heat treatment was applied to convert the uranium particles into UAlx compounds by a chemical reaction of the uranium particles and aluminum matrix. Thus, these target plates can be treated with the same alkaline dissolution process that is used for conventional $UAl_x$ dispersion targets, while increasing the uranium density in the target plates.

Development of Industrial-Scale Fission 99Mo Production Process Using Low Enriched Uranium Target

  • Lee, Seung-Kon;Beyer, Gerd J.;Lee, Jun Sig
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.613-623
    • /
    • 2016
  • Molybdenum-99 ($^{99}Mo$) is the most important isotope because its daughter isotope, technetium-99m ($^{99m}Tc$), has been the most widely used medical radioisotope for more than 50 years, accounting for > 80% of total nuclear diagnostics worldwide. In this review, radiochemical routes for the production of $^{99}Mo$, and the aspects for selecting a suitable process strategy are discussed from the historical viewpoint of $^{99}Mo$ technology developments. Most of the industrial-scale $^{99}Mo$ processes have been based on the fission of $^{235}U$. Recently, important issues have been raised for the conversion of fission $^{99}Mo$ targets from highly enriched uranium to low enriched uranium (LEU). The development of new LEU targets with higher density was requested to compensate for the loss of $^{99}Mo$ yield, caused by a significant reduction of $^{235}U$ enrichment, from the conversion. As the dramatic increment of intermediate level liquid waste is also expected from the conversion, an effective strategy to reduce the waste generation from the fission $^{99}Mo$ production is required. The mitigation of radioxenon emission from medical radioisotope production facilities is discussed in relation with the monitoring of nuclear explosions and comprehensive nuclear test ban. Lastly, the $^{99}Mo$ production process paired with the Korea Atomic Energy Research Institute's own LEU target is proposed as one of the most suitable processes for the LEU target.

Radioactive Waste Issues Related to Production of Fission-based 99Mo by using Low Enriched Uranium (LEU) (저농축 우라늄을 사용하는 핵분열 몰리브덴-99 생산에 관련된 방사성 폐기물 연구)

  • Hassan, Muhmood ul;Ryu, Ho Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.2
    • /
    • pp.155-161
    • /
    • 2015
  • Technetium-99m (99mTc) is an important, short-lived decay product of molybdenum-99 (99Mo), and it is considered the backbone of the modern nuclear diagnostic procedures. Since fission of 235U is the main source of production of 99Mo, either highly-enriched uranium (HEU) targets or low-enriched uranium (LEU) targets are irradiated in the research reactors. The use of LEU targets is being promoted by the international community to avoid the proliferation issues linked with the use of HEU. In order to define the waste management strategy at the planning stage of establishment of an LEU based 99Mo production facility, the impact of the use of LEU targets on the radioactive waste stream of the 99Mo production facility was analyzed. Because the volume of uranium waste is estimated to increase six times, the use of high uranium density targets and the utilization of hot isostatic pressing were recommended to reduce the increased waste volume from the use of LEU based targets.

Direct Determination of Molybdenum in Simulated Nuclear Spent Fuels by Inductively Coupled Plasma Atomic Emission Spectrometry (유도결합플라스마 원자방출분광법을 이용한 모의 사용후핵연료 중 몰리브덴 분석)

  • Choi, Kwang Soon;Lee, Chang Heon;Park, Soon Dal;Park, Yang Soon;Joe, Kih Soo
    • Analytical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.291-296
    • /
    • 2000
  • The SIMFUEL which composition is similar to PWR nuclear spent fuels was dissolved with a acid digestion bomb. An analytical conditions of ICP-AES for the direct determination of molybdenum in the uranium matrices without separation process were investigated. Based on the effect of uranium on molybdenum intensity. the most optimum wavelengths of molybdenum were found to be 202.030 and 203.844 nm. However, the method of standard additions is applied to overcome the effects of changing background caused by analyzing the sample solutions containing high concentration of uranium and the standard calibration solutions. The relative error of two methods, direct and indirect measurements with cation exchange resin separation procedures, was less than 5%. Therefore it was possible for this procedure to directly measure molybdenum in uranium matrices without separation. And this method was also applied to the determination of several percent of molybdenum in a U-Mo alloy.

  • PDF

Interaction study of molten uranium with multilayer SiC/Y2O3 and Mo/Y2O3 coated graphite

  • S.K. Sharma;M.T. Saify;Sanjib Majumdar;Palash K. Mollick
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1855-1862
    • /
    • 2023
  • Graphite crucibles are used for melting uranium and its alloys in VIM furnace. Various coating materials namely Al2O3, ZrO2, MgO etc. are applied on the inner surface of the crucibles using paint brush or thermal spray technique to mitigate U-C interaction. These leads to significant amount of carbon pick-up in uranium. In this study, the attempts are made to develop multilayer coatings comprising of SiC/Y2O3 and Mo/Y2O3 on graphite to study the feasibility of minimizing U-C interaction. The parameters are optimized to prepare SiC coating of about 70㎛ thickness using CVD technique on graphite coupons and subsequently Y2O3 coating of about 250㎛ thickness using plasma spray technique. Molybdenum and Y2O3 layers were deposited using plasma spray technique with 70㎛ and 250㎛ thickness, respectively. Interaction studies of the coated graphite with molten uranium at 1450℃ for 20 min revealed that Y2O3 coating with SiC interlayer provides physical barrier for uranium-graphite interaction, however, this led to the physical separation of coating layer. Y2O3 coating with Mo interlayer provided superior barrier effect showing no degradation and the coatings remained intact after interaction tests. Therefore, the Mo/Y2O3 coating was found to be a promising solution for minimizing carbon pick-up during uranium/uranium alloy melting.

IRRADIATION PERFORMANCE OF U-Mo MONOLITHIC FUEL

  • Meyer, M.K.;Gan, J.;Jue, J.F.;Keiser, D.D.;Perez, E.;Robinson, A.;Wachs, D.M.;Woolstenhulme, N.;Hofman, G.L.;Kim, Y.S.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.169-182
    • /
    • 2014
  • High-performance research reactors require fuel that operates at high specific power to high fission density, but at relatively low temperatures. Research reactor fuels are designed for efficient heat rejection, and are composed of assemblies of thin-plates clad in aluminum alloy. The development of low-enriched fuels to replace high-enriched fuels for these reactors requires a substantially increased uranium density in the fuel to offset the decrease in enrichment. Very few fuel phases have been identified that have the required combination of very-high uranium density and stable fuel behavior at high burnup. U-Mo alloys represent the best known tradeoff in these properties. Testing of aluminum matrix U-Mo aluminum matrix dispersion fuel revealed a pattern of breakaway swelling behavior at intermediate burnup, related to the formation of a molybdenum stabilized high aluminum intermetallic phase that forms during irradiation. In the case of monolithic fuel, this issue was addressed by eliminating, as much as possible, the interfacial area between U-Mo and aluminum. Based on scoping irradiation test data, a fuel plate system composed of solid U-10Mo fuel meat, a zirconium diffusion barrier, and Al6061 cladding was selected for development. Developmental testing of this fuel system indicates that it meets core criteria for fuel qualification, including stable and predictable swelling behavior, mechanical integrity to high burnup, and geometric stability. In addition, the fuel exhibits robust behavior during power-cooling mismatch events under irradiation at high power.

Mineralogical and Geochemical Studies of Uranium Deposits of the Okchon Group in Southwestern District off Taejon, Korea (대전서남지대(大田西南地帶)에 있어서의 옥천대(沃川帶) 우라늄광상(鑛床)에 대(對)한 광물학적(鑛物學的) 및 지화학적(地化學的) 연구(硏究))

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.17 no.4
    • /
    • pp.289-298
    • /
    • 1984
  • Uraniferous black slates of the Okchon sequence occur in Koesan (northeast) through Miwon-Boun (middle) to the southwest off Taejon (southwest) within the Okchon fold belt. The Uraniferous balck slates in the southwest off Taejon are particularly well developed in Chubu (northeast) and Moksso-ri (middle) areas whereas they are less developed in Jinsan (southwest) area. The uraniferous beds range from less than a meter to 40 meters in thickness and range from less than 0.02% $U_3O_8$ (cut-off-grade) to 0.05% $U_3O_8$ in the southwestern district off Taejon. Electron microprobe analysis of uranium-minerals found in graphitic slate samples enables to estimate their major compositions semi-quantitatively so that uraninite, ferro-uranophane and chlopinite are tentatively identified. Uranium-minerals are closely associated with carbon and metal sulfides. Correlation analysis of trace element concentrations revealed that U and F.C., and U and Mo are lineary correlative respectively and their correlation coefficients are positively high whereas those of U and V, U and Mn, and U and Zr are negatively low, implying that uranium mineralization has been closely related with concentrations of carbon and molybdenum. Stable isotope analyses of pyrite sulfur range widely from +11.5% to -23.3% in ${\delta}^{34}S$ values whereas those of graphite carbon fall within a narrow range between -23.3% and -28.9% in ${\delta}^{13}C$ values. The wide range of ${\delta}^{34}S$ values suggests that the sulfur could be of meteoric origin rather than of igneous source. The narrow range of ${\delta}^{13}C$ values, which are close to those of coal, indicates that the graphite is organic carbon in origin. Therefore, it is concluded that the uranium mineralization in the Okchon sequence took place primarily in sedimentary environment rich in organic matter and sulfide ion, both of which served as the reducing agents to convert soluble uranyl complex to insoluble uranium dioxide.

  • PDF

BEHAVIORS OF MOLYBDENUM IN UO2 FUEL MATRIX

  • Ha, Yeong-Keong;Kim, Jong-Goo;Park, Yang-Soon;Park, Soon-Dal;Song, Kyu-Seok
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.309-316
    • /
    • 2011
  • Molybdenum is the most abundant fission product since its fission yield is equivalent to that of xenon, and it has a very special role in the chemistry of nuclear fuel because it influences the oxygen potential of $UO_2$ fuel. In this study, the distribution of molybdenum in spent $UO_2$ fuel specimens with 33.3, 41.0 and 57.6 GWd/tU burnup was measured by a LA-ICP-MS system and the reproducibility of the measured data was obtained. The Mo distribution was almost constant along the radius of a fuel except an increase at the periphery of the fuel. It showed a drop in reproducibility with relatively high deviation of measured values for the highest burnup fuel. To explain this, the state of molybdenum in a $UO_2$ matrix and its effect on the oxidation behavior of $UO_2$ were investigated. The low reproducibility was explained by the segregation of molybdenum, and the inhibition of oxidation by the molybdenum was also observed.

Development of fission 99Mo production process using HANARO

  • Lee, Seung-Kon;Lee, Suseung;Kang, Myunggoo;Woo, Kyungseok;Yang, Seong Woo;Lee, Junsig
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1517-1523
    • /
    • 2020
  • The widely used medical isotope technetium-99 m (99mTc) is a daughter of Molybdenum-99 (99Mo), which is mainly produced using dedicated research reactors from the nuclear fission of uranium-235 (235U). 99mTc has been used for several decades, which covers about 80% of the all the nuclear diagnostics procedures. Recently, the instability of the supply has become an important topic throughout the international radioisotope communities. The aging of major 99Mo production reactors has also caused frequent shutdowns. It has triggered movements to establish new research reactors for 99Mo production, as well as the development of various 99Mo production technologies. In this context, a new research reactor project was launched in 2012 in Korea. At the same time, the development of fission-based 99Mo production process was initiated by Korea Atomic Energy Research Institute (KAERI) in 2012 in order to be implemented by the new research reactor. The KAERI process is based on the caustic dissolution of plate-type LEU (low enriched uranium) dispersion targets, followed by the separation and purification using a series of columns. The development of proper waste treatment technologies for the gaseous, liquid, and solid radioactive wastes also took place. The first stage of this process development was completed in 2018. In this paper, the results of the hot test production of fission 99Mo using HANARO, KAERI's 30 MW research reactor, was described.