• Title/Summary/Keyword: Uranium in soil

Search Result 85, Processing Time 0.028 seconds

Evaluation of elemental concentrations of uranium, thorium and potassium in top soils from Kuwait

  • Bajoga, A.D.;Al-Dabbous, A.N.;Abdullahi, A.S.;Alazemi, N.A.;Bachama, Y.D.;Alaswad, S.O.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1638-1649
    • /
    • 2019
  • Top soil samples across the state of Kuwait numering ninety were collected and analysed using gamma-ray spectrometry, to evaluate the elemental concentration of $^{238}U$, $^{232}Th$ and $^{40}K$ and their depletion/enrichment. Results of elemental concentration ranges from 0.48 to 2.61 mg/kg, 0.87-5.23 mg/kg, and 0.24-2.23%, with a mean values of 1.39 mg/kg, 3.47 mg/kg, and 1.18%, for the $^{238}U$, $^{232}Th$ and $^{40}K$, respectively. Further analysis was conducted amongst the five identified soil types, i.e. Aquisalids (S1), Calcigypsids (S2), Petrocalcids (S3), Petrogypsids (S4), and torripsamment (S5). The highest radioactivity concentrations from both uranium and thorium were recorded in the S2 (Calcigypsids) soil, with a value of 1.71 (mg/kg) and 4.45 (mg/kg), respectively. Minimum and maximum values of $^{40}K$ are 1.1(%) and 1.27(%) and is prevalent in Aquisalids (S1) and Petrocalcids (S3) soil types, respectively. Ratios of elemental concentration for $^{232}Th/^{238}U$, $^{40}K/^{238}U$, $^{40}K/^{232}Th$ across the soil types are 2.53, 0.09 and 0.03, with a correlation coefficient of 0.92, 0.34, and 0.38, respectively. A progressively higher $^{232}Th/^{238}U$ ratio is observed moving south-wards, indicating lower $^{238}U$ content in soils from the south relative to the northern part. Overall results indicate Kuwait to be relatively an area with low level of natural radioactivity.

Decontamination of Uranium-Contaminated Gravel (우라늄으로 오염된 자갈의 제염)

  • Park, Uk Ryang;Kim, Gye Nam;Kim, Seung Soo;Moon, Jei Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.1
    • /
    • pp.35-43
    • /
    • 2015
  • A large amount of radioactively-contaminated gravel can be produced on the demolition/restoration of facilities related the back end of fuel cycle. However, because of the lacking in basic knowledge for decontamination of radioactive-contami-nated gravel, this study has performed the basic tests using for soil-washing. To find effective decontamination condition, several experiments were carried out for the selection of optimal decontamination agents. Washing by 0.1 M nitric acid was proved to be more effective than that by distilled water or surfactant for decontamination of uranium-contaminated gravel. In addition, crushing/grinding of uranium-contaminated gravel prior to washing was contributed to increase in of removal efficiency of uranium and reduction of decontamination time. The smaller the sizes of crushed gravel was, the more the removal efficiency increased. Also, small the sized particles improved chances for meeting the clearance requirement of the treated gravel.

Precipitation-Filtering Method for Reuse of Uranium Electrokinetic Leachate (우라늄 오염 동전기 침출액의 재이용을 위한 침전-여과 방법)

  • Kim, Gye-Nam;Shon, Dong-Bin;Park, Hye-Min;Kim, Ki-Hong;Lee, Ki-Won;Moon, Jeik-kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.2
    • /
    • pp.63-71
    • /
    • 2011
  • A large volume of uranium electrokinetic leachate has been generated during the electrokinetic decontamination to remove uranium from contaminated soil. The treatment technology for the reuse of the uranium leachate was developed. The concentration of uranium in the generated uranium leachate was 180 ppm and concentrations of Mg(II), K(I), Fe(II), and Al(III) ions ranged from 20 ppm to 1,210 ppm. The treatment process for uranium leachate consisted mainly of mixing and cohesion, precipitation, concentration, and filtration. In order to obtain the pH=11 of a precipitate solution, the calcium hydroxide needs to be 3.0g/100ml and the sodium hydroxide needed to be 2.7g/100ml. The results of several precipitation experiments showed that a mixture of NaOH+0.2g alum+0.15g magnetite was an optimal precipitant for filtration. The average particle size of precipitate with NaOH+alum+0.15g magnetite was $600\;{\mu}m$. Because the total value of metal concentrations in supernatant at pH=9 was the smallest, sodium hydroxide should be added with 0.2g alum and 0.15g magnetite for pH=9 of leachate.

Hydrochemistry and Distribution of Uranium and Radon in Groundwater of the Nonsan Area (논산지역 지하수중 우라늄과 라돈의 수리지질학적 특성과 정밀함량분포)

  • Cho, Byeong Wook;Kim, Moon Su;Kim, Tae Seung;Han, Jin Seok;Yun, Uk;Lee, Byeong Dae;Hwang, Jae Hong;Choo, Chang Oh
    • The Journal of Engineering Geology
    • /
    • v.22 no.4
    • /
    • pp.427-437
    • /
    • 2012
  • A total of 100 groundwater samples were collected from the Nonsan area and the behaviors of uranium and radon as natural radionuclides were investigated with respect to other physicochemical components in the groundwater in order to understand their occurrence, properties, and origins. Radionuclide levels were used to construct detailed concentration maps. The concentration of uranium ranges from 0 to 378 ${\mu}g/L$, with an average of 8.57 ${\mu}g/L$, standard deviation of 42.88 ${\mu}g/L$, and median of 0.56 ${\mu}g/L$. The correlation coefficient between uranium and radon is 0.42, whereas these radionuclides show no relation with other physicochemical components in groundwater. It is noteworthy that the uranium level in most samples (97% of the samples) is less than 30 ${\mu}g/L$, where the bedrock of the aquifer is granite or complex rocks located along the boundary between granite and metamorphic rocks. In the Okcheon metamorphic belt, the uranium concentration of most groundwater is less than 1 ${\mu}g/L$. Radon levels varies from 128 to 9,140 pCi/L, with an average of 2,186 pCi/L, standard deviation of 1,725 pCi/L, and median of 1,805 pCi/L. High radon levels (> 4,000 pCi/L) are most common in regions of Jurassic granite, whereas low radon areas are found in regions of sedimentary rock. In conclusion, the distribution and occurrence of radionuclides are intimately related to the basic geological characteristics of the rocks in which the radiogenic minerals are primarily contained.

Hydrogeochemistry and Occurrences of Uranium and Radon in Groundwater of Mungyeong Area (문경지역 지하수의 수리지화학 및 우라늄과 라돈의 산출 특성)

  • Lee, Byeongdae;Cho, Byung Uk;Kim, Moon Su;Hwang, Jae Hong
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.553-566
    • /
    • 2018
  • The occurrence of natural radionuclides like uranium and radon in groundwater was hydrochemically examined based on 40 well groundwaters in Mungyeong area. The range of electrical conductivity (EC) value in the study area was $68{\sim}574{\mu}S/cm$. In addition to the increase of EC value, the content of cations and anions also tends to increase. Uranium concentrations ranged from $0.03{\sim}169{\mu}g/L$ (median value, $0.82{\mu}g/L$) and radon concentrations ranged from 70~30,700 pCi/L (median value, 955 pCi/L). Only 1 out of 40 wells (2.5%) showed uranium concentration exceeding the maximum contaminant level (MCL; $30{\mu}g/L$) proposed by the US Environmental Protection Agency (EPA). Radon concentrations of eight wells (20%) exceeded AMCL(Alternative maximum contaminant level) of the US EPA (4,000 pCi/L). Four out of those eight wells even exceeded Finland's guideline level (8,100 pCi/L). When concentrations of uranium and radon were investigated in terms of geology, the highest values are generally associated with granite. The uranium and radon levels observed in this study are low in comparison to those of other countries with similar geological settings. It is likely that the measured value was lower than the actual content due to the inflow of shallow groundwater by the lack of casing and grouting.

Uranium and Radon Concentrations in Groundwater of the Daejeon Granite Area: Comparison with Other Granite Areas (대전 화강암지역 지하수의 우라늄과 라돈 함량: 다른 화강암지역과의 비교)

  • Yun, Uk;Kim, Moon Su;Jeong, Do Hwan;Hwang, Jae Hong;Cho, Byong Wook
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.631-643
    • /
    • 2018
  • Uranium and radon concentrations in groundwater from 80 wells from Daejeon area were measured to determine the range of concentrations according to the geology. The median uranium content of groundwater was $11.14{\mu}g/L$ for the two-mica granite, $0.90{\mu}g/L$ for the biotite granite, and $0.47{\mu}g/L$ for the Ogcheon group. The median radon content of groundwates was 114.3 Bq/L for the two-mica granite, 61.6 Bq/L for the biotite granite, and 42.2 Bq/L for the Ogchon group, respectively. The uranium content of two-mica granite is 3.78 mg/ kg, which is slightly higher than that of biotite granite 3.20 mg/kg. However, the uranium content in groundwatewr of two-mica granite groundwater is much higher than that of biotite granite. This can be explained by the fact that the two-mica granite is vulnerable to weathering than biotite granite, so uranium in mineral is easily leached into groundwater. The exceeding rate of samples having uranium content above $30{\mu}g/L$ in granite area was 23.8%, which is higher than that of 6.7% in Jurassic granite in Korea. On the other hand, the exceeding rate of samples having radon content above 148 Bq/L in granite rate area was 31.0% which is similar to that of Jurassic granite area of 31.7%.

Uptake of Some Toxic Elements by Wild Plants in Siwaqa Area/Central Jordan

  • Bzour, Asma Fayyad;Khoury, Hani Nicola;Oran, Sawsan Attalah
    • Applied Microscopy
    • /
    • v.47 no.3
    • /
    • pp.148-156
    • /
    • 2017
  • The wide distribution of redox-sensitive elements (RSE) as arsenic (As), cadmium (Cd), selenium (Se), and strontium (Sr) in the top soil of Siwaqa area are related to the weathering action of alkaline surface and groundwater on the parent rocks. The bioavailability, distribution, sorption, and ecotoxicity of As, Cd, Se, and Sr, of the wild plants and top soils in the study area were investigated. A total number of 23 surface soil samples and 23 plant samples were collected and analyzed for the most toxic elements. The uptake of elements by plants was dependent on the plant species and the concentration of elements in the soil. For example, Sr was the highest concentration in soil samples and plants, while Se was the lowest concentration in soil samples and pants. For the plants, the results showed that Bellevalia sp. had the highest elements uptake, while Allium rothii had the lowest elements uptake. The results of this work provide a valuable knowledge for understanding the bioavailability of some toxic elements in the soil and plants of Central Jordan. The results are expected to be of great help for the Jordanian Uranium Mining Company during their environmental risk assessments.

Improved Treatment Technique for the Reuse of Waste Solution Generated from a Electrokinetic Decontamination System (동전기제염장치에서 발생한 폐액의 재사용을 위한 개선된 처리기술)

  • Kim, Wan-Suk;Kim, Seung-Soo;Kim, Gye-Nam;Park, Uk-Ryang;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • A large amount of acidic waste solution is generated from the practical electrokinetic decontamination equipments for the remediation of soil contaminated with uranium. After filtration of uranium hydroxides formed by adding CaO into the waste solution, the filtrate was recycled in order to reduce the volume of waste solution. However, when the filtrate was used in an electrokinetic equipment, the low permeability of the filtrate from anode cell to cathode cell due to a high concentration of calcium made several problems such as the weakening of a fabric tamis, the corrosion of electric wire and the adhension of metallic oxides to the surface of cathode electrode. To solve these problems, sulfuric acid was added into the filtrate and calcium in the solution was removed as $CaSO_4$ precipitate. A decontamination test using a small electrokinetic equipment for 20 days indicated that Ca-removed waste solution decreased uranium concentration of the waste soil to 0.35 Bq/g, which is a similar to a decontamination result obtained by distilled water.

Hydrochemistry and Occurrences of Natural Radioactive Materials from Groundwater in Various Geological Environment (다양한 지질환경에서 지하수의 수리화학 및 자연방사성물질 산출특성)

  • Jeong, Chan Ho;Lee, Yu Jin;Lee, Yong Cheon;Kim, Moon Su;Kim, Hyun Koo;Kim, Tae Seong;Jo, Byung Uk;Choi, Hyeon Young
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.531-549
    • /
    • 2016
  • The purpose of this study is to analyze the relationship of hydrochemistry, geology, fault with occurrence of uranium and radon-222 from the groundwater in the Yeongdong area. In this study, 49 groundwater and 4 surface water samples collected in the study area were collected on two separate occasions. The surface radioactivities were measured at 40 points to know the relationship between the occurrence of uranium in groundwater and surface geology. The chemical composition of groundwater showed three types : $Ca-HCO_3$, $Na-HCO_3$ and $Ca-HCO_3(SO_4,\;NO_3)$. Two groundwater of 49 samples exceeded the maximum contaminant levels of uranium, $30{\mu}g/L$, proposed by the Ministry of Environment of Korea and 11 groundwater of 40 samples for Rn-222 concentrations exceeded the 148 Bq/L maximum contaminant level of US EPA. Most of unsuitable groundwater are located in the geological boundary related with the biotite gneiss and the surface radioactivities of rock samples showed no relationship with groundwater geochemical constituents. The strike-slip fault, Youngdong fault, is $N45^{\circ}E$ direction and the high concentrations of uranium in upper part of fault, consisted of granite and granitic gneiss are detected but in lower part, consisted of metamorphic sedimentary rock are not detected. It suggests that the natural radioactive concentrations are related with the geologic characteristics and the migration and diffusion of natural radioactive materials are affected by the fault.