Browse > Article
http://dx.doi.org/10.9720/kseg.2016.4.531

Hydrochemistry and Occurrences of Natural Radioactive Materials from Groundwater in Various Geological Environment  

Jeong, Chan Ho (Department of Construction Safety and Disaster Prevention Engineering, Daejeon University)
Lee, Yu Jin (Department of Construction Safety and Disaster Prevention Engineering, Daejeon University)
Lee, Yong Cheon (Department of Construction Safety and Disaster Prevention Engineering, Daejeon University)
Kim, Moon Su (Soil and Groundwater Research Division, National Institute of Environmental Research)
Kim, Hyun Koo (Soil and Groundwater Research Division, National Institute of Environmental Research)
Kim, Tae Seong (Soil and Groundwater Research Division, National Institute of Environmental Research)
Jo, Byung Uk (Korea Institute of Geoscience and Mineral Resources)
Choi, Hyeon Young (Department of Construction Safety and Disaster Prevention Engineering, Daejeon University)
Publication Information
The Journal of Engineering Geology / v.26, no.4, 2016 , pp. 531-549 More about this Journal
Abstract
The purpose of this study is to analyze the relationship of hydrochemistry, geology, fault with occurrence of uranium and radon-222 from the groundwater in the Yeongdong area. In this study, 49 groundwater and 4 surface water samples collected in the study area were collected on two separate occasions. The surface radioactivities were measured at 40 points to know the relationship between the occurrence of uranium in groundwater and surface geology. The chemical composition of groundwater showed three types : $Ca-HCO_3$, $Na-HCO_3$ and $Ca-HCO_3(SO_4,\;NO_3)$. Two groundwater of 49 samples exceeded the maximum contaminant levels of uranium, $30{\mu}g/L$, proposed by the Ministry of Environment of Korea and 11 groundwater of 40 samples for Rn-222 concentrations exceeded the 148 Bq/L maximum contaminant level of US EPA. Most of unsuitable groundwater are located in the geological boundary related with the biotite gneiss and the surface radioactivities of rock samples showed no relationship with groundwater geochemical constituents. The strike-slip fault, Youngdong fault, is $N45^{\circ}E$ direction and the high concentrations of uranium in upper part of fault, consisted of granite and granitic gneiss are detected but in lower part, consisted of metamorphic sedimentary rock are not detected. It suggests that the natural radioactive concentrations are related with the geologic characteristics and the migration and diffusion of natural radioactive materials are affected by the fault.
Keywords
Uranium; radon-222; geological boundary; hydrochemistry; fault; geology;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Banks, D., Frengstad, B., Midtgard, A. K., Krog, J. R., and Strand, T., 1998, The chemistry of Norwegian groundwater: I. the distribution of radon, major and minor elements in 1604 crystalline bedrock groundwaters. Science of the Total environment, 222(1), 71-91.   DOI
2 Betcher, R. N., Gascoyne, M., and Brown, D., 1988, Uranium in groundwaters of southeastern Manitoba, Canada. Canadian Journal of Earth Sciences, 25(12), 2089-2103.   DOI
3 CEPA (California Environmental Protection Agency), 2001, Public health goals for uranium in drinking water. CEPA, California, 30p.
4 Choo, C. O., 2002, Characteristics of uraniferous minerals in Daebo granite and significance of mineral species, Journal of Mineralogical Society of Korea, 15(1), 11-21 (in Korean with English abstract).
5 Cho, B. W., Jeong, C, H., and Han, I. S., 2009, A detail study on the occurrence of radioactive materials in groundwater (II), NIER, 273p (in Korean with English abstract).
6 Cho, B. W., Kim, K. H., Kim, Y. K., Sung, I. H., Ahn., J. S., Yun, U., Yoon, Y. Y., Lee, K. Y., Lee, B. D., Chon, C. M., Cho, S. Y., Chae, G. T., Choi, B. I., Hong, Y. K., Baek, S. G., Ryu, S. W., and Jeong, C. H., 2008, Adetail study on the occurrence of radioactive materials in groundwater (I), NIER, 293p.
7 Cho, B. W., Kim, K. H., Kim, Y. K., Sung, I. H., Ahn, J. S., Yun, U., Yoon, Y. Y., Lee, K. Y., Lee, B. D., Lee, H. J., Im, H. C., Cho, S. Y., and Hong, K. Y., 2006, A study on the occurrence of radioactive materials in groundwater, NIER, 200p (in Korean with English abstract).
8 Cothern, C. R., 1990, Radon, radium and uranium in drinking water, CRC Press.
9 EPA, 2012, Report to Congress: Radon in Drinking Water Regulations, EPA 815-R-12-002, 34p.
10 Finch, R. J. and Murakami, T., 1999, Systematic and paragenesis of uranium minerals. In Uranium: Mineralogy, Geochemistry, and the Environment: Reviews in Mineralogy, 38(1), 91-180.
11 Gaines, R. V., Skinner, H. C., Foord, E. E., Mason, B., Rosenzweig, A., King, V. T., and Dowty, E., 1997, Dana's new mineralogy, Eighth edition, New York, John Wiley & Sons, 1872p.
12 Greenberg, A. E., Clesceri, L. S., and Eaton, A. D., 1992, Standard methods for the examination of water and waste water, The American Public Health Association, Washington DC, 4-55.
13 Jeong, C. H., Kim, M. S., Lee, Y. J., Han, J. H., Jang, H. G., and Jo, B. U., 2011, Hydrochemistry and occurrence of natural radioactive materials within borehole groundwater in the Cheonwon area, The Journal of Engineering Geology, 21(2), 163-178 (in Korean with English abstract).   DOI
14 Han, J. H. and Park, K. H., 1996, Abundances of uranium and radon in groundwater of Taejeon area, the Korean Society of Economic and Environmental Geology, 29(5), 589-595 (in Korean with English abstract).
15 Jeong, C. H., Kim, C. S., Kim, T. K., and Kim, S. J., 1997, Reaction path modelling on geochemical evolution of groundwater and formation of secondary minerals in watergneiss reaction system, The Journal of Mineralogical Society of Korea, 10(1), 33-44 (in Korean with English abstract).
16 Jeong, C. H., Kim, D. W., Kim, M. S., Lee, Y. J., Kim, T. S., Han, J. S., and Jo, B. W., 2012, Occurrence of natural radioactive materials in borehole groundwater and rock core in the Icheon area, The Journal of Engineering Geology, 22(1), 95-111 (in Korean with English abstract).   DOI
17 Cowart, J. B. and Osmond, J. K., 1980, Uranium isotopes in Groundwater as a Prospecting Techique. US Dept. Energy Report, GJBX 119, 112p.
18 Jeong, C. H., Yan, J. H., Lee, Y. C., Lee, Y. J., Choi, H. Y., Kim, M. S., Kim, H. K., Kim, T. S., and Jo, B. U., 2016, Occurrence Characteristics of Uranium and Radon-222 in Groundwater at OO Village, Yongin Area, The Journal of Engineering Geology, 26(2), 261-276 (in Korean with English abstract).   DOI
19 Jeong, C. H., Ryu, K. S., Kim, M. S., Kim, T. S., Han, J. S., and Jo, B. U., 2013, Geochemical occurrence of uranium and radon-222 in groundwater at test borehole site in the Daejeon area, The Journal of Engineering Geology, 23(2), 171- 186 (in Korean with English abstract).   DOI
20 Jeong, C. H., Yang, J. H., Lee, Y. J., Lee, Y. C., Choi, H. Y., Kim, M. S., Kim, H. K., Kim, T. S., and Jo, B. U., 2015, Occurrences of uranium and radon-222 from groundwaters in various geological environment in the hoengseong area, The Journal of Engineering Geology, 25(4), 557-576 (in Korean with English abstract).   DOI
21 Ju, B. K., Kim, M. S., Jeong, D. H., Hong, J. K., Kim, D. S., Noh, D. J., Yoon, J. K., and Kim, T. S., 2013, Environment characteristics of naturally occurring radioactive materials ($^{238}U$, $^{222}Rn$) concentration in drinking groundwaters of metamorphic rock areas; Korea, Journal of Soil and Groundwater Environment, 18(3), 82-92 (in Korean with English abstract).   DOI
22 Kim, M, S., Yang, J, H., Jeong, C. H., Kim, H. K., Kim, D. W., and Jo, B. U., 2014, Geochemical origins and occurrences of natural radioactive materials in borehole groundwater in the Goesan area, The Journal of Engineering Geology, 24(4), 535-550 (in Korean with English abstract).   DOI
23 KIER(Korea Institute of Energy and Resources Seoul Korea), 1986, Geological report of the Yongdong sheet(scale 1:50,000).
24 Lanctot, E. M., Tolman, A. L., and Loiselle, M., 1985, Hydrogeochemistry of radon in ground water. The Second Annual Eastem Regional Ground Water Conference, Portland, Maine, July 16-18, 66-85 p.
25 NIER (National Institute of Environmental Research), 1999, Study on the radionuclides concentration in groundwater (I).
26 Langmuir, D., Hall, P., and Drever, J., 1997, Environmental geochemistry, Prentice Hall, New Jersey.
27 Loomis, L. P., 1997, Radon-222 concentration and aquifer lithology in North Carolina. Ground Water Monitoring Review, 7, 33-39.
28 Lowry, J. D., Hoxie, D. C., and Moreau, E., 1987, iExtreme levels of 222 Rn and U in a private water supplyi Radon, radium, and other radioactivity in ground water: Hydrogeologic impact and application to indoor airborne contamination, Lewis Publisher, Chelsea, MI.
29 Mandarino, M. J., 1999, Fleischer's glossary of mineral species, Minerlogical Record Incorporated Tucson, Arizona.
30 Michel, J., 1990, Relationship of radium and radon with geological formations. In: Cothern, C. R. and Revers, P.A. (eds.), Radon, Radium and Uranium in Drinking Water. Lewis Publishers, Inc., Michigan, 83-96.
31 NIER (National Institute of Environmental Research), 2000, Study on the radionuclides concentration in groundwater (II).
32 NIER (National Institute of Environmental Research), 2001, Study on the radionuclides concentration in groundwater (III).
33 NIER (National Institute of Environmental Research), 2002, Study on the radionuclides concentration in groundwater (IV).
34 Park, M. E. and Kim, G. S., 1998, Geochemical of uranium and thorium deposits from the Kyemyeongsan pegmatite, The Korean Society of Economic and Envrionmental Geology, 31, 365-374 (in Korean with English abstract).
35 Shin, D. C., Kim, Y. S., Moon, J. Y., Park, H. S., Kim, J. Y., and Park, S. K., 2002, A review on the hazard of radioactive materials in groundwater, Journal of Envrionmental Toxicology Society of Korea, 17, 273-384 (in Korean with English abstract).
36 Wathen, J. B., 1987, The effect of uranium siting in two-mica granites on uranium concentrations and radon activity in ground water. Radon, radium, and other radoactivity in groundwater, Proceedings of the NWWA conference.
37 Sung, I. H., Cho, B, W., Kim, D. O., Kim, K. H., Park, D. W., Park, J. K., Yoon, Y. Y., Lee, B. J., Lee, B. D., Lee J. C., Im, H. C., Chung, K. S., Cho, S. Y., Hong, Y. K., Jang, W. S., Yang, J. H., Shin, D. C., and Han, I. S., 2002, A study on the occurrence of radioactive materials in groundwater (IV), NIER, 357p (in Korean with English abstract).
38 Sung, I. H., Cho, B, W., Woo, H. J., Kim, D. O., Kim, K. H., Park, J. K., Hong, Y. K., Lee, B. D., Yun, U., Lee, B. J., Lee, J. C., Yoon, Y. Y., Kim, Y, J., Chung, K. S., Cho, S. Y., Shin, D. C., Chang, T. W., and Yu, M. J., 2001, A study on the occurrence of radioactive materials in groundwater(III), NIER, 388p (in Korean with English abstract).
39 Sung, I. H., Kim, D. O., Woo, H. J., Cho, B. W., Park, J. K., Lee, H, Y., Chung, K. S., Yoon, Y. Y., Cho, S. Y., Lee, Y. J., Lee, B. D., Kim, T. K., Kim, K. S., Choo, C. O., and Shin, D, C., 1999, A study on the occurrence of radioactive materials in groundwater (I), NIER, 338p (in Korean with English abstract).